K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2021

Ta có \(\hept{\begin{cases}3a=4b\\2b=5c\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{b}{3}=\frac{a}{4}\\\frac{b}{5}=\frac{c}{2}\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{b}{15}=\frac{a}{20}\\\frac{b}{15}=\frac{c}{6}\end{cases}}\Leftrightarrow\frac{a}{20}=\frac{b}{15}=\frac{c}{6}\)

Đặt \(\frac{a}{20}=\frac{b}{15}=\frac{c}{6}=k\Leftrightarrow\hept{\begin{cases}a=20k\\b=15k\\c=6k\end{cases}}\)

Khi đó a2 + b2 + c2 = 661

<=> (20k)2 + (15k)2 + (6k)2 = 661

<=> 661k2 = 661

<=> k2 = 1

<=> k = \(\pm1\)

Khi k = 1 => a = 20 ; b = 15 ; c = 6

Khi k = -1 => a = -20 ; b = - 15 ; c = -6

1 tháng 11 2021

Ta có \(2a=3b=4c\Leftrightarrow\frac{2a}{12}=\frac{3b}{12}=\frac{4c}{12}\Leftrightarrow\frac{a}{6}=\frac{b}{4}=\frac{c}{3}\)

Áp dụng dãy tỉ số bằng nhau ta có : 

\(\frac{a}{6}=\frac{b}{4}=\frac{c}{3}=\frac{3a}{18}=\frac{4b}{16}=\frac{3a+4b-c}{18+16-3}=\frac{72}{31}\)

=> \(\hept{\begin{cases}a=\frac{432}{31}\\b=\frac{288}{31}\\c=\frac{216}{31}\end{cases}}\)

4 tháng 11 2021

\(\Rightarrow\left[{}\begin{matrix}\dfrac{2}{3}-x=3\sqrt{3}\\\dfrac{2}{3}-x=-3\sqrt{3}\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{2-9\sqrt{3}}{3}\\x=\dfrac{2+9\sqrt{3}}{3}\end{matrix}\right.\)

4 tháng 11 2021

cảm ơn nhé

 

18 tháng 7 2017

\(A=\frac{n+1}{n-3}=\frac{n-3+4}{n-3}=\frac{n-3}{n-3}+\frac{4}{n-3}=1+\frac{4}{n-3}\)

=> n-3 thuộc Ư(4) = {-1,-4,1,4}

Ta có bảng :

n-3-1-414
n2-147

Vậy n = {-1,2,4,7}

20 tháng 7 2017

Thiếu rồi bạn còn -2 và 2 nữa mà

19 tháng 9 2021

\(A=\left(n+1\right)\left(n-1+1\right):2\)

11 tháng 10 2017

Ta có: \(A=\left|x-1999\right|+\left|x-9\right|=\left|1999-x\right|+\left|x-9\right|\ge\left|1999-x+x-9\right|=1990\)

Dấu "=" xảy ra khi \(\left(1999-x\right)\left(x-9\right)\ge0\Leftrightarrow9\le x\le1999\)

Vậy MinA = 1990 khi \(9\le x\le1999\)

21 tháng 10 2016

Bài 2:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\begin{cases}a=kb\\c=kd\end{cases}\)

=> \(\frac{5a+3b}{5a-3b}=\frac{5kb+3b}{5kb-3b}=\frac{b\left(5k+3\right)}{b\left(5k-3\right)}=\frac{5k+3}{5k-3}\left(1\right)\)

\(\frac{5c+3d}{5c-3d}=\frac{5kd+3d}{5kd-3d}=\frac{d\left(5k+3\right)}{d\left(5k-3\right)}=\frac{5k+3}{5k-3}\left(2\right)\)

Từ (1) và (2) => \(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\)

21 tháng 10 2016

Bài 3:

Đặt \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=k\)

=> \(\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=k^3\)

=> \(\frac{a}{d}=k^3\) (1)

Lại có: \(\frac{a+b+c}{b+c+d}=\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=k\)

=> \(\left(\frac{a+b+c}{b+c+d}\right)^3=k^3\) (2)

Từ (1) và (2) => \(\frac{a}{d}=\left(\frac{a+b+c}{b+c+d}\right)^3\)

7 tháng 12 2019

gọi (d) y=x 0 y x 1 2 1 -1 2 -2

Thay x=1=>y=1=> (1;1)

Thay x=2=>y=2=> (2;2)

gọi (d1) y=-2x

Thay x=-1=> y=2=> (-1;2)

Thay x=1=>y=-2=> (1;-2)