Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thanh niên còn khổ hơn ! Phải đi làm trung thu cho mấy em !
Sửa đề: Một trường có 3 lớp 7, biết \(\frac{2}{3}\) có số học sinh lớp 7A bằng \(\frac{3}{4}\) số học sinh lớp 7B và bằng \(\frac{4}{5}\) số học sinh lớp 7C. Lớp 7C có số học sinh ít hơn tổng số học sinh của 2 lớp kia là 57 bạn. Tính số học sinh mỗi lớp.
Gọi số học sinh lớp 7A ; 7B ; 7C lần lượt là \(x;y;z\inℕ^∗\left(hs\right)\)
Theo đề bài, ta có:
\(x+y=57+z\)
\(\Rightarrow\)\(x+y-z=57\)
Ta có:\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}=\frac{12x}{18}=\frac{12y}{16}=\frac{12z}{15}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\Rightarrow\)\(\frac{12x}{18}=\frac{12y}{16}=\frac{12z}{15}=\frac{12x+12y-12z}{18+16-15}=\frac{12.\left(x+y-z\right)}{19}=36\)
Do đó:
\(\Rightarrow\)\(\frac{2x}{3}=36\Rightarrow2x=108\Rightarrow x=54\)
\(\Rightarrow\)\(\frac{3y}{4}=36\Rightarrow3y=144\Rightarrow y=48\)
\(\Rightarrow\)\(\frac{4z}{5}=36\Rightarrow4z=180\Rightarrow z=45\)
Vậy số học sinh lớp \(7A;7B;7C\) lần lượt là \(54;48;45\left(hs\right)\)
Bài 1: Trên các cạnh Ox và Oy của góc xOy, lấy các điểm A và B sao cho OA = OB. Tia phân giác của các góc xOy cắt AB ở C. Chứng minh rằng:
C là trung điểm của AB
Bài 2: Cho tam giác ABC có , M là trung điểm của AC. Trên tia đối của tia MB lấy điểm K sao cho MK = MB. Chứng minh rằng:
a) KC vuông góc với AC
b) AK // BC
Bài 3: Cho tam giác ABC, D là trung điểm của AC, E là trung điểm của AB. Trên tia đối của AB. Trên tia đối của tia DB lấy điểm N sao cho DN = DB. Trên tia đối của tia EC, lấy điểm M sao cho EM = EC. Chứng minh rằng A là trung điểm của MN.
Bài 4: Cho điểm A nằm trong góc nhọn xOy. Vẽ AH vuông góc với Ox, trên tia đối của tia HA lấy điểm B sao cho HB = HA. Vẽ AK vuông góc với Oy, trên tia đối của tia KA lấy điểm C sao cho KC = KA. Chứng minh rằng:
a) OB = OC.
b) Biết , tính .
Bài 5: Tam giác ABC có AC > AB, tia phân giác của góc A cắt BC ở D. Trên AC lấy điểm E sao cho AE = AB. Chứng minh rằng AD vuông góc với BE.
Bài 6: Cho m là đường trung trực của đoạn thẳng Ab, C là điểm thuộc m. Gọi Cx là tia đối của tia CA, Cn là tia phân giác của góc bCx. Chứng minh rằng Cn vuông góc với m.
Bài 7: Cho hai đoạn thẳng Ab và CD cắt nhau tại trung điểm O của mỗi đoạn thẳng. Lấy các điểm E trên đoạn thẳng AD, F trên đoạn thẳng BC sao cho AE = BF. Chứng minh rằng ba điểm E, O, F thẳng hàng.
Bài 8: Cho đoạn thẳng AB. Vẽ về hai phía của Ab các đoạn thẳng AC và BD vuông góc với AB sao cho AC = BD. Chứng minh rằng .
Bài 9: Cho tam giác ABC, kẻ BD vuông góc với AC, kể CE vuông góc với AB. Trên tia đối của tia BD, lấy điểm H sao cho BH = AC. Trên tia đối của tia CE, lấy điểm K sao cho CK = AB. Chứng minh rằng Ah = Ak.
Bài 10: Cho tam giác ABC, M là trung điểm của BC. Trên nửa mặt phẳng không chứa C có bờ AB, vẽ tia Ax vuông góc với AB, trên tia đó lấy điểm D sao cho AD = AB. Trên nửa mặt phẳng không chứa B có bờ là AC, vẽ tia Ay vuông góc với AC, trên tia đó lấy điểm E sao cho AE = AC. Chứng minh rằng:
a)
b)
Bài 11: Cho tam giác ABC có AB = AC. Trên các cạnh AB và AC lấy các điểm D và E sao cho AD = AE. Gọi K là giao điểm của BE và CD. Chứng minh rằng:
a) BE = CD.
b)
Bài 12: Cho tam giác ABC có . Tia phân giác của góc B cắt AC ở D, tia phân giác của góc C cắt AB ở E. Các tia phân giác đó cắt nhau ở I. Chứng minh rằng ID = IE
Bài 13: Cho đoạn thẳng AB, O là trung điểm của AB. Trên cùng một nửa mặt phẳng bờ AB, vẽ các tia Ax và By vuông góc với AB. Gọi C là một điểm thuộc tia Ax. Đường vuông góc với OC tại O cắt tia By ở D. Chứng minh rằng CD = AC + BD.
Bài 14: Trên cạnh BC của một tam giác ABC, lấy các điểm E và F sao cho BE = CF. Qua E và F, vẽ các đường thẳng song song với BA, chúng cắt cạnh AC theo thứ tự ở G và H. Chứng minh rằng EG + FH = AB.
Bài 15: Cho tam giác ABC có , Ab = AC. Qua A vẽ đường thẳng d sao cho B và C nằm cùng phía đối với đường thẳng d. Kẻ BH và Ck vuông góc với d. Chứng minh rằng:
a) AH = CK.
b) HK = BH + CK
Bài 16: Cho tam giác ABC. Vẽ đoạn thẳng AD bằng AD bằng và AD bằng và vuông góc với AB (D và C nằm khác phía đối với AB). Vẽ đoạn thẳng AE bằng và vuông góc với AC (E và B nằm khác phía đối với AC). Vẽ AH vuông góc với BC. Đường thẳng HA cắt DE ở K. Chứng minh rằng DK = DE.
Bài 17: Cho tam giác ABC cân tại A có , kẻ BD vuông góc với AC. Trên cạnh AB lấy điểm E sao cho AE = AD. Chứng minh rằng:
a) DE // BC
b) CE AB
Bài 18: Trên cạnh huyền BC của tam giác vuông ABC, lấy các điểm D và E sao cho BD = BA, CE = CA. Tính
Bài 19: Cho tam giác ABC, M là trung điểm của BC. Chứng minh rằng:
a) Nếu thì .
b) Nếu thì
c) Nếu thì
Bài 20: Tam giác ABC có . Trên tia đối của tia AC lấy D sao cho AD = AB. Tính theo a.
Bài 21: Cho điểm M thuộc đoạn thẳng AB. Trên cùng một nửa mạt phẳng bờ AB, vẽ các tam giác đều AMC, BMD. Gọi E, F theo thứ tự là trung điểm của AD, CB. Chứng minh rằng tam giác MEF là tam giác đều.
Bài 22: Cho tam giác ABC cân tại A, , BC = 6cm. Đường vuông góc với AB tại A cắt BC ở D. Tính độ dài của BD.
Bài 23: Cho tam giác ABC có . Trên tia phân giác của góc A, lấy điểm E sao cho AE = AB + AC. Chứng minh rằng tam giác BCE là tam giác đều.
Bài 23: Ở miền trong góc nhọn xOy, vẽ tia Oz sao cho . Qua điểm A thuộc tia Oy, vẽ AH vuông với Ox, cắt Oz ở B. Trên tia Bz lấy điểm D sao cho BD = OA. Chứng minh rằng tam giác AOD là tam giác cân.
Bài 24: Cho , Oy là tia phân giác của , Ot là tia phân giác của góc xOy, M là điểm thuộc miền trong của góc yOz. Vẽ MA Ox, vẽ MB Oy, vẽ MC Ot. Tính độ dài OC theo Ma và MB.
Bài 25: Cho tam giác ABC cân tại A, . Trên nửa mặt phẳng bờ BC chứa điểm A, kẻ tia Cx sao cho . Gọi D là giao điểm của các tia Cx và Ba. Chứng minh rằng AD = BC.
Bài 26: Cho tam giác ABC có các góc nhọn nhỏ hơn . Vẽ ở phía ngoài tam giác ABC các tam giác đều ABD, ACE. Gọi M là giao điểm của DC và BE. Chứng minh rằng:
a) =
b) =
Bài 27: Cho tam giác cân ABC có . Gọi K là điểm trong tam giác sao cho . Chứng minh rằng tam giác ABK là tam giác cân và tính số đo góc BAK.
Bài 28: Cho tam giác ABC vuông tại A có AC = 3AB. Trên AC lấy các điểm D và E sao cho AD = DE = EC. Chứng minh rằng .
Bài 29: Cho tam giác cân ABC có , tia phân giác của góc B cắt AC ở D. Chứng minh rằng BC = BD + AD.
Bài 30: Tam giác ABC vuông tại A có BC = 26cm, AB : AC = 5: 12. Tính các độ dài AB, AC.
Bài 31: Tam giác ABC có AB = 16cm, AC = 14cm, . Độ dài BC bằng mấy ?
Bài 32: Cho các số: 5,9,12,13,15,16,20. Hãy chọn ra các bộ ba số là độ dài ba cạnh của một tam giác vuông.
Bài 33: Vẽ về một phía của đoạn thẳng AB = 5cm các tia Ax, By vuông góc với AB. Trên tia Ax lấy điểm D sao cho AD = 5cm. Trên tia By lấy điểm E sao cho BE = 1cm. Trên đoạn thẳng AB lấy điểm C sao cho Ac = 2cm. Góc DCE có là góc vuông hay không?
Bài 34: Cho tam giác ABC cân tại A, . Kẻ BD vuông góc với AC, kẻ CE vuông góc với AB. Gọi K là giao điểm của BD và CE. Chứng minh rằng AK là tia phân giác của góc A.
Bài 35: Cho tam giác ABC có M là trung điểm của BC và AM là tia phân giác của góc A. Chứng minh rằng tam giác ABC là tam giác cân.
Bài 36: Cho ABC vuông cân tại A. Một đường thẳng d bất kì qua A. Kẻ Bh và Ck vuông góc với đường thẳng d. Chứng minh rằng tổn có giá trị không đổi.
Bài 37: Cho tam giác Abc vuông tại A (AB > AC). Tia phân giác của góc B cắt AC ở D. Kẻ DH vuông góc với BC. Trên tia AC lấy điểm E sao cho AE = AB. Đường thẳng vuông góc với AE tại E cắt tia DH ở K. Chứng minh rằng:
a) BA = BH
b)
Chúc các bạn luôn thành công trong học tập & sự nghiệp
kì thực hình học lớp 7 cũng ko quá khó như bn nghũ đâu . Lúc đầu mk cx giống bn tưởng hình rất khó nhưng nếu trên lớp bn chú ý nghe kĩ thầy cô giáo giảng , về nhà học lại là ok . Bn mua sách Nâng cao và phát triển Toán 7 có rất nhìu bài toán hay , bổ ích
C1 :đ2 chung của ngành Đv nguyên sinh
C2 tại sao trâu bò nc ta mắc bệnh sán lá gan nhiug
C3 vòn đời của giun đũa
c4 cấu tạo trog & ngoài của giun đất
C1: Đặc điểm chung của ngàh động vật nguyên sinh
C2: Tại sao trâu bò nc ta mắc bệnh sán lá gan nhìu
C3: Trình bày vòng đời cảu giun đũa
C4 : Cấu tạo ngoài , trong cảu giun đất
tớ lớp 7 ^^
MK sang lớp 6.