Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau
a,xét tam giác ABD và tam giác ACE có:
AB=AC(gt)
vì \(\widehat{ABC}\)=\(\widehat{ACB}\)suy ra \(\widehat{ABD}\)=\(\widehat{ACE}\)
BD=CE(gt)
\(\Rightarrow\)\(\Delta\)ABD=\(\Delta\)ACE(c.g.c)
b,xét 2 tam giác vuông ADH và AEK có:
AD=AE(theo câu a)
\(\widehat{DAH}\)\(\widehat{EAK}\)(theo câu a)
\(\Rightarrow\)\(\Delta\)ADH=\(\Delta\)AEK(CH-GN)
\(\Rightarrow\)DH=EK
c,xét tam giác AHO và tam giác AKO có:
AH=AK(theo câu b)
AO cạnh chung
\(\Rightarrow\)\(\Delta\)AHO=\(\Delta\)AKO( cạnh góc vuông-cạnh huyền)
\(\Rightarrow\)\(\widehat{HAO}\)=\(\widehat{KAO}\)
\(\Rightarrow\)AO là phận giác của góc BAC
d,câu này dễ nên bn có thể tự làm tiếp nhé
c, Do \(\Delta ADE=\Delta DBF\) ( câu b )
\(\Rightarrow\widehat{AED}=\widehat{DFB}\)
Mà 2 góc này nằm ở vị trí đồng vị
\(\Rightarrow DF//AE\)
Hay \(DF//AC\)
Sorry, bạn tự vẽ hình nha!
a.
Tam giác ABC cân tại A có:
\(B=C=\frac{180-A}{2}=\frac{180-80}{2}=\frac{100}{2}=50\)
b.
Xét tam giác ABD và tam giác ACE có:
AB = AC (tam giác ABC cân tại A)
B = C (tam giác ABC cân tại A)
BD = CE (gt)
=> Tam giác ABD = Tam giác ACE (c.g.c)
=> AD = AE (2 cạnh tương ứng)
=> Tam giác ADE cân tại A
c.
Xét tam giác HAD vuông tại H và tam giác KAE vuông tại K có:
AD = AE (tam giác ADE cân tại A)
A1 = A2 (tam giác ABD = tam giác ACE)
=> Tam giác HAD = Tam giác KAE (cạnh huyền - góc nhọn)
=> AH = AK (2 cạnh tương ứng)
a) Xét \(\Delta ABC\) có:
\(AB=AC\left(gt\right)\)
=> \(\Delta ABC\) cân tại A.
=> \(\widehat{ABC}=\widehat{ACB}\) (tính chất tam giác cân).
b) Ta có: \(\widehat{ABC}=\widehat{ACB}\left(cmt\right)\)
Mà \(\widehat{ECK}=\widehat{ACB}\) (vì 2 góc đối đỉnh).
=> \(\widehat{ABC}=\widehat{ECK}.\)
Hay \(\widehat{DBH}=\widehat{ECK}.\)
Xét 2 \(\Delta\) vuông \(DBH\) và \(ECK\) có:
\(\widehat{DHB}=\widehat{EKC}=90^0\left(gt\right)\)
\(DB=EC\left(gt\right)\)
\(\widehat{DBH}=\widehat{ECK}\left(cmt\right)\)
=> \(\Delta DBH=\Delta ECK\) (cạnh huyền - góc nhọn).
=> \(DH=EK\) (2 cạnh tương ứng).
c) Xét 2 \(\Delta\) vuông \(DHI\) và \(EKI\) có:
\(\widehat{DHI}=\widehat{EKI}=90^0\)
\(DH=EK\left(cmt\right)\)
\(\widehat{DIH}=\widehat{EIK}\) (vì 2 góc đối đỉnh)
=> \(\Delta DHI=\Delta EKI\) (cạnh góc vuông - góc nhọn kề).
=> \(DI=EI\) (2 cạnh tương ứng).
=> \(I\) là trung điểm của \(DE\left(đpcm\right).\)
Chúc bạn học tốt!
Bài 1:
a) Sai đề rồi bạn, đáng lý ra phải là AB=AF mới đúng
Xét ΔABE vuông tại E(AD⊥BE) và ΔAFE vuông tại E(AD⊥BE,F∈BE) có
AE chung
\(\widehat{BAE}=\widehat{FAE}\)(do AE là tia phân giác của góc A)
Do đó: ΔABE=ΔAFE(cạnh góc vuông, góc nhọn kề)
⇒AB=AF(hai cạnh tương ứng)
b) Xin lỗi bạn, mình chỉ biết làm theo cách lớp 8 thôi nhé
Xét tứ giác HFKD có HF//DK(do HF//BC,D∈BC) và HF=DK(gt)
nên HFKD là hình bình hành(dấu hiệu nhận biết hình bình hành)
⇒HD//KF và HD=KF(hai cạnh đối trong hình bình hành HFKD)
c)
Xét ΔABC có AB<AC(gt)
mà góc đối diện với cạnh AB là góc C
và góc đối diện với cạnh AC là góc B
nên \(\widehat{C}< \widehat{B}\)(định lí về quan hệ giữa cạnh và góc đối diện trong tam giác)
hay \(\widehat{ABC}>\widehat{C}\)(đpcm)
Câu c nhaaaaaaaa
Có: AF là phân giác DAE
=> \(DAF=EAF=\frac{DAE}{2}\)
Mà: DAE = 60 độ
=> \(EAF=30\)
=> Mà: AFE = 90 độ
=> \(AEF=180-90-30=60\)
=> \(AEB=120\) (Do: AEB và AEF là 2 góc kề bù)
Vậy góc BEA = 120 độ.
\(F\left(x\right)=ax^2+b\)
với \(F\left(0\right)=a0^2+b=-3\Leftrightarrow b=-3\left(2\right)\)
với\(F\left(1\right)=a1^2+b=-1\Leftrightarrow a+b=-1\left(1\right)\)
từ (1) và (2) ta có phương trình sau
\(\hept{\begin{cases}b=-3\\a+b=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}b=-3\\a+\left(-3\right)=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}b=-3\\a=2\end{cases}}\)
vậy b = -3 và a = 2