K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 9 2016

\(\left(1+\frac{b}{a}\right)\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)=8\)

\(\Leftrightarrow\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=8\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=8abc\)

Mặt khác :

Vì a ; b ; c là độ dài 3 cạnh của tam giác nên a ; b ; c > 0

Áp dụng BĐT Cauchy cho 2 số ta có : \(\begin{cases}a+b\ge2\sqrt{ab}\\b+c\ge2\sqrt{bc}\\c+a\ge2\sqrt{ac}\end{cases}\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ac}\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)

Dấu " = " xảy ra khi \(\begin{cases}a=b\\b=c\\c=a\end{cases}\)\(\Leftrightarrow a=b=c\)

=> đpcm

29 tháng 3 2018

Vì a,b,c là 3 cạnh tam giác nên a,b,c là 3 số dương 
À mà bạn biết tính chất này chứ a/(a+b+c)<a/(b+c) (Cộng vào mẫu a dương nên nhỏ hơn) 
a/(b+c)<(a+a)/(a+b+c)=2a/(a+b+c) (Cộng cả tử với mẫu với a) 
=> Ta có: a/(a+b+c)<a/(b+c)<2a/(a+b+c) (1) 
Tương tự với b: b/(a+b+c)<b/(a+c)<2b/(a+b+c) (2) 
Tương tự với c: c/(a+b+c)<c/(a+b)<2c/(a+b+c) (3) 
Cộng (1) với (2) và (3) ta được đpcm 
1< a/(b+c) + b/(a+c) + c/(a+b) <2

bạn chỉ cần làm tương tự thôi

30 tháng 3 2018

thank bn nha

21 tháng 4 2019

Đặt \(A=\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

           \(=\left(a+b+c\right).\frac{1}{a}+\left(a+b+c\right).\frac{1}{b}+\left(a+b+c\right).\frac{1}{c}\)

           \(=\frac{a+b+c}{a}+\frac{a+b+c}{b}+\frac{a+b+c}{c}\)

            \(=\frac{a}{a}+\frac{b+c}{a}+\frac{b}{b}+\frac{a+c}{b}+\frac{c}{c}+\frac{a+b}{c}\)

           \(=1+\frac{b+c}{a}+1+\frac{a+c}{b}+1+\frac{a+b}{c}\)

         \(=3+\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}\)

Ta có: trong 1 tam giác thì tổng độ dài 2 cạnh bao giờ cũng lớn hơn cạnh còn lại ( bất đẳng thức tam giác )

\(\Rightarrow\hept{\begin{cases}b+c>a\\a+c>b\\a+b>c\end{cases}}\)\(\Rightarrow\hept{\begin{cases}\frac{b+c}{a}>1\\\frac{a+c}{b}>1\\\frac{a+b}{c}>1\end{cases}}\)

\(\Rightarrow A>3+1+1+1\)

\(\Rightarrow A>6\left(đpcm\right)\)

AH
Akai Haruma
Giáo viên
21 tháng 10

Lời giải:

$(a-b)^2=(b-c)^2$

$\Rightarrow (a-b)^2-(b-c)^2=0$

$\Rightarrow (a-b-b+c)(a-b+b-c)=0$

$\Rightarrow (a-2b+c)(a-c)=0$

$\Rightarrow a=c$ hoặc $a+c=2b$

Không đủ cơ sở để khẳng định ABC là tam giác đều bạn nhé. 

31 tháng 7 2017

kn với mk.mik tích cho

31 tháng 5 2017

vì chu vi của tam giác ABC là 24 cm nên a+b+c=24 (1)

  các cạnh a,b,c tỉ lệ với 3,4,5 nên \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)(2)

từ (1) và (2) áp dụng tính chất của dãy tỉ số bằng nhau ta có 

\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{3+4+5}=\frac{24}{12}=2\)

\(\Rightarrow a=2.3=6;b=2.4=8;c=2.5=10\)

vậy độ dài các cạnh của tam giác ABC lần lượt là 6cm, 8cm , 10cm

b) ta có

\(10^2=100\)

\(6^2+8^2=36+64=100\)

\(\Rightarrow10^2=6^2+8^2\)

suy ra tam giác ABC là tam giác vuông (theo định lý py-ta-go)