\(\alpha\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
26 tháng 6 2019

Lời giải:

Nhớ rằng \(\cos ^2a+\sin ^2a=1\). Ta có:

\(B=(1-\sin ^4a-\cos ^4a)(\tan ^2a+\cot ^2a+2)\)

\(=[1+2\sin ^2a\cos ^2a-(\sin^4a+\cos ^4a+2\sin ^2a\cos ^2a)](\frac{\sin ^2a}{\cos ^2a}+\frac{\cos ^2a}{\sin ^2a}+2)\)

\(=[1+2\sin ^2a\cos ^2a-(\sin ^2a+\cos ^2a)^2].\frac{\sin ^4a+\cos ^4a+2\sin ^2a\cos ^2a}{\cos ^2a\sin ^2a}\)

\(=[1+2\sin ^2a\cos ^2a-1^2].\frac{(\sin ^2a+\cos ^2a)^2}{\cos ^2a\sin ^a}\)

\(=2\sin ^2a\cos ^2a.\frac{1^2}{\cos ^2a\sin ^2a}=2\)

31 tháng 3 2019

mk nhầm

a,b là các số dương thôi nhé

31 tháng 3 2019

Vì a,b>0 nên:\(ab>0;\left(a^2-b^2\right)^2\ge0\)

\(\Leftrightarrow ab\left(a^2-b^2\right)^2\ge0\)

\(\Leftrightarrow ab\left(a^4-2a^2b^2+b^4\right)\ge0\)

\(\Leftrightarrow a^5b-2a^3b^3+ab^5\ge0\)

\(\Leftrightarrow a^6+ab^5+a^5b+b^6-a^6-2a^3b^3-b^6\ge0\)

\(\Leftrightarrow a\left(a^5+b^5\right)+b\left(a^5+b^5\right)-\left(a^3+b^3\right)^2\ge0\)

\(\Leftrightarrow\left(a+b\right)\left(a^5+b^5\right)\ge\left(a^3+b^3\right)^2\)

\(\Leftrightarrow a+b\ge a^3+b^3\)(Vì a^5+b^5=a^3+b^3 và a^3+b^3;a^5+b^5>0)

\(\Leftrightarrow a+b\ge\left(a+b\right)\left(a^2-ab+b^2\right)\)

\(\Leftrightarrow a^2-ab+b^2\ge1\)

Vậy GTLN M=1 tại \(a^2-b^2=0\Leftrightarrow a=b\)

                              \(\Leftrightarrow a^3+a^3=a^5+a^5\)(Vì a=b)

                             \(\Leftrightarrow\orbr{\begin{cases}a=0\\a=1\end{cases}}\)(TH a=0 loại vì a>0)

                              \(\Leftrightarrow b=1\)

25 tháng 8 2020

Bài làm:

Ta có:

(a-b)2+(b-c)2+(c-a)2=(a+b-2c)2+(b+c-2a)2+(c+a-2b)2

<=> a2-2ab+b2+b2-2bc+c2+c2-2ca+a2=6a2+6b2+6c2-6(ab+bc+ca)

<=> \(4a^2+4b^2+4c^2-4ab-4bc-4ca=0\)

<=> \(2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

<=> \(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

<=> \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

=> \(\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}}\Rightarrow a=b=c\)

25 tháng 8 2020

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=\left(a+b-2c\right)^2+\left(b+c-2a\right)^2+\left(c+a-2b\right)^2\)

\(\Leftrightarrow\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2-4ab-4bc-4ca=\left(a+b\right)^2\)

\(+\left(b+c\right)^2+\left(c+a\right)^2-4\left(b+c\right)a+4a^2-4\left(c+a\right)b+4b^2-4\left(a+b\right)c+4c^2\)

\(\Leftrightarrow-4ab-4bc-4ca=-4\left(b+c\right)a+4a^2-4\left(c+a\right)b+4b^2-4\left(a+b\right)c+4c^2\)

\(\Leftrightarrow ab-\left(a+b\right)c+c^2+bc-\left(b+c\right)a+a^2+ca-\left(c+a\right)b+b^2=0\)

\(\Leftrightarrow ab-ac-bc+c^2+bc-ba-ca+a^2+ca-cb-ab+b^2=0\)

\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=0\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Leftrightarrow a=b=c\left(đpcm\right)\)

8 tháng 11 2018

Bài 2

\(a,x^3+2x^2+x\)

\(=x.\left(x^2+2x+1\right)\)

\(b,xy+y^2-x-y\)

\(=y.\left(x+y\right)-\left(x+y\right)\)

\(=\left(y-1\right).\left(x+y\right)\)

bài 3

\(a,3x.\left(x^2-4\right)=0\)

\(\Rightarrow\orbr{\begin{cases}3x=0\\x^2=4\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x=2,x=-2\end{cases}}\)

vậy x=0,x=2 hay x=-2

\(b,xy+y^2-x-y=0\)

\(y.\left(x+y\right)-\left(x+y\right)=0\)

\(\left(y-1\right).\left(x+y\right)=0\)

\(\Rightarrow\orbr{\begin{cases}y-1=0\\x+y=0\end{cases}\Rightarrow\orbr{\begin{cases}y=1\\x=-1\end{cases}}}\)

vậy x=-1, y=1