K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Số thứ tự múi giờ của HN là 105/15=7

Số thứ tự múi giờ của Tokyo là 135/15=9

Số thứ tự múi giờ của Los Angeles là (360-120)/15=16

b: máy bay hạ cạnh tại Tokyo thì lúc đó ở HN là 

10h+7h=17h

=>Lúc đó ở Tokyo là 17h+2h=19h

27 tháng 12 2021

Bài 2: 

c: Để hai đường thẳng song song thì m-1=2

hay m=3

19 tháng 8 2021

giúp gì vậy ạ??

 

Bài 5:

a: ĐKXĐ: a>0; a<>1; a<>4

b: \(B=\dfrac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{a-1+a-4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\)

\(=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}{2a-5}\)

\(=\dfrac{\sqrt{a}-2}{\sqrt{a}\left(2a-5\right)}\)

 

2 tháng 9 2021

hình bé quá

2 tháng 9 2021

sin 650=cos 350
\(cos70^0=sin30^0\)
\(tan80^0=cot20^0\)
\(cot68^0=tan32^0\)

27 tháng 7 2021

Bài 1:

Phần a bạn tự làm nha! (Đ/S: 0,5)

b, B = \(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{\sqrt{x}+2}{3-\sqrt{x}}+\dfrac{\sqrt{x}+2}{x-5\sqrt{x}+6}\) với \(x\ge0;x\ne4;x\ne9\)

B = \(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-3}+\dfrac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

B = \(\dfrac{x-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{x-4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}+\dfrac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

B = \(\dfrac{\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

B = \(\dfrac{1}{\sqrt{x}-2}=\dfrac{\sqrt{x}+2}{x-4}\)

Vậy ...

c, Ta có: A = \(1-\dfrac{\sqrt{x}}{\sqrt{x}+1}\)\(\dfrac{1}{\sqrt{x}+1}\)

T = \(\dfrac{A}{B}\)\(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\)= 1 - \(\dfrac{3}{\sqrt{x}+1}\)

Ta có: x \(\ge\) 0 \(\Leftrightarrow\) \(\sqrt{x}\ge0\) \(\Leftrightarrow\) \(\sqrt{x}+1\ge1\) \(\Leftrightarrow\) \(\dfrac{3}{\sqrt{x}+1}\le3\) \(\Leftrightarrow\) \(-\dfrac{3}{\sqrt{x}+1}\ge-3\) \(\Leftrightarrow\) T \(\ge\) -2

Vậy ...

Bài 2: ĐK: x \(\ge\) 0

Giả sử: \(P\)\(\sqrt{P}\)

\(\Leftrightarrow\) \(\dfrac{\sqrt{x}+2}{\sqrt{x}+5}< \dfrac{\sqrt{\sqrt{x}+2}}{\sqrt{\sqrt{x}+5}}\)

\(\Leftrightarrow\) \(\dfrac{\sqrt{\left(\sqrt{x}+2\right)\left(\sqrt{x}+5\right)}-\left(\sqrt{x}+2\right)}{\sqrt{x}+5}>0\)

\(\Leftrightarrow\) \(\sqrt{\left(\sqrt{x}+2\right)\left(\sqrt{x}+5\right)}-\left(\sqrt{x}+2\right)>0\) (\(\sqrt{x}+5>0\) với mọi x \(\ge\) 0)

\(\Leftrightarrow\) \(\sqrt{\left(\sqrt{x}+2\right)}\sqrt{\sqrt{x}+5-\sqrt{x}-2}>0\)

\(\Leftrightarrow\) \(\sqrt{\left(\sqrt{x}+2\right)}\sqrt{3}>0\)

\(\Leftrightarrow\) \(\sqrt{\sqrt{x}+2}>0\)

Vì x \(\ge\) 0 \(\Leftrightarrow\) \(\sqrt{x}+2\ge2\) \(\Leftrightarrow\) \(\sqrt{\sqrt{x}+2}\ge\sqrt{2}>0\) (Đpcm)

Vậy \(P\)\(\sqrt{P}\)

Chúc bn học tốt!

27 tháng 7 2021

1a ra 0,2 bn ạ

 

13 tháng 9 2021

\(1,\\ a,=\dfrac{\left(3+2\sqrt{3}\right)\sqrt{3}}{3}+\dfrac{\left(2+\sqrt{2}\right)\left(\sqrt{2}-1\right)}{1}\\ =\dfrac{3\sqrt{3}+6}{3}+\sqrt{2}=\sqrt{3}+1+\sqrt{2}\\ b,=\left(\dfrac{\sqrt{5}+\sqrt{2}}{3}-\dfrac{\sqrt{5}-\sqrt{2}}{3}+1\right)\cdot\dfrac{1}{\left(\sqrt{2}+1\right)^2}\\ =\dfrac{\sqrt{5}+\sqrt{2}-\sqrt{5}+\sqrt{2}+3}{3}\cdot\dfrac{1}{\left(\sqrt{2}+1\right)^2}\\ =\dfrac{2\sqrt{2}+3}{3\left(3+2\sqrt{2}\right)}=\dfrac{1}{3}\)

\(2,\\ A=2x+\sqrt{\left(x-3\right)^2}=2x+\left|x-3\right|\\ =2\left(-5\right)+\left|-5-3\right|=-10+8=-2\\ B=\dfrac{\sqrt{\left(2x+1\right)^2}}{\left(x-4\right)\left(x+4\right)}\left(x-4\right)^2=\dfrac{\left|2x+1\right|\left(x-4\right)}{x+4}\\ B=\dfrac{17\cdot4}{12}=\dfrac{17}{3}\)

a: loading...

b: PTHĐGĐ là:

-x^2-2x+3m=0

=>x^2+2x-3m=0

Δ=(-2)^2-4*(-3m)=12m+4

Để (P) cắt (d) tại hai điểm pb thì 12m+4>0

=>m>-1/3

Sửa đề: x1.x2^2+x2.(3m-2x1)= 6
<=> x2.( x1.x2+3m-2x1) = 6
<=> x2.( -3m+3m-2x1) = 6
<=> -2x1x2 = 6
<=> x1.x2 =-3
<=> -3m =-3
<=> m=1