Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}x^2+y^4-2xy^3=0\left(1\right)\\x^2+2y^2-2xy=1\left(2\right)\end{matrix}\right.\\ \)
\(\left(1\right)\Leftrightarrow2xy^3=x^2+y^4\Leftrightarrow2xy=\dfrac{x^2+y^4}{y^2}=\dfrac{x^2}{y^2}+y^2\left(3\right)\)
Thế (3)\(\) vào (2) ta được:
\(\left(2\right)\Leftrightarrow x^2+2y^2-\left(\dfrac{x^2}{y^2}+y^2\right)=1\Leftrightarrow x^2+y^2-\dfrac{x^2}{y^2}-1=0\Leftrightarrow\left(x^2+y^2\right)-\left(\dfrac{x^2}{y^2}+1\right)=0\Leftrightarrow\left(x^2+y^2\right)-\left(\dfrac{x^2+y^2}{y^2}\right)=0\Leftrightarrow\left(x^2+y^2\right)\left(1-\dfrac{1}{y^2}\right)=0\Rightarrow y=1\)Thế y=1 vào (3) ta được:
\(\left(3\right)\Leftrightarrow2x=x^2+1\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x=1\)
Vậy \(\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
a) Đặt \(t=\sqrt{2x^2-3x+5}\ge0\) thì
\(2t=t^2-11\)
\(\Leftrightarrow\left[{}\begin{matrix}t=1+2\sqrt{3}\\t=1-2\sqrt{3}\end{matrix}\right.\)
Vì \(t\ge0\) nên \(t=1+2\sqrt{3}\)
\(\Rightarrow\sqrt{2x^2-3x+5}=1+2\sqrt{3}\)
\(\Leftrightarrow2x^2-3x+5=13-4\sqrt{3}\)
\(\Leftrightarrow2x^2-3x-8+4\sqrt{3}=0\)
Giải pt trên tìm được x
c) ĐK: \(x\ge0\)
Đặt \(a=\sqrt{x}\ge0;b=\sqrt{x+3}\ge0\)
pt trên đc viết lại thành
\(2b^2+2ab=4\left(a+b\right)\)
\(\Leftrightarrow\left(b-2\right)\left(a+b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}b=2\\a=-b\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+3}=2\\\sqrt{x}=-\sqrt{x+3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=x+3\end{matrix}\right.\)
Vậy pt có 1 nghiệm duy nhất x = 1.
b) ĐK: tự làm
Ta có \(\left(x+5\right)\left(2-x\right)=-x\left(x+3\right)+10\)
Đặt \(a=\sqrt{x}\ge0;b=\sqrt{x+3}\ge0\)
pt trên đc viết lại thành
\(-a^2b^2+10=3ab\)
\(\Leftrightarrow-a^2b^2-3ab+10=0\) (*)
Đặt \(t=ab\ge0\) thì (*) \(\Rightarrow-t^2-3t+10=0\)
\(\Leftrightarrow\left[{}\begin{matrix}ab=t=2\\ab=t=-5\end{matrix}\right.\)
\(\Leftrightarrow\sqrt{x\left(x+3\right)}=2\)
Bạn tự làm tiếp nhé
đặt \(\left\{{}\begin{matrix}u=\sqrt{x+8}\\v=\sqrt{x+3}\end{matrix}\right.\) khi đó phương trình đã cho trở thành :
(u-v)(uv+1)=5 và có u2-v2=5 nên suy ra :
(u-v)(uv+1)=(u-v)(u+v) <=> (u-v)(uv+1-u-v)=0
=> u-v=0 hoặc uv+1-u-v =0 . đến đây bạn thay căn vào giải nha mk ngại viết căn.
ĐKXĐ: x>0
\(\left(\dfrac{x}{x+3\sqrt{x}}+\dfrac{1}{\sqrt{x}+3}\right):\left(1-\dfrac{2}{\sqrt{x}}+\dfrac{6}{x+3\sqrt{x}}\right)\)
= \(\dfrac{x+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+3\right)}:\dfrac{x+3\sqrt{x}-2\left(\sqrt{x}+3\right)+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\)
= \(\dfrac{x+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+3\right)}:\dfrac{x+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+3\right)}=1\)
\(\dfrac{\sqrt{\dfrac{-\left(2\right)^5}{5^3.5^2}.\dfrac{-\left(5\right)^3}{2^9}.5^2}}{\sqrt[3]{\dfrac{-\left(3\right)^3}{2^6}.\dfrac{\left(5\right)^2}{3^2.2^5}.\dfrac{\left(5\right)^4}{3^4}}}=\dfrac{\sqrt{\dfrac{1}{2^4}}}{\sqrt[3]{\dfrac{-\left(5\right)^6}{2^{12}.3^3}}}=\dfrac{\dfrac{1}{4}}{\sqrt[3]{\left(\dfrac{-5^2}{2^4.3}\right)^3}}=\dfrac{\dfrac{1}{4}}{\dfrac{-25}{48}}=\dfrac{-12}{25}\)
Dùng BĐT Bunhiacopski:
Ta có: \(ac+bd\le\sqrt{a^2+b^2}.\sqrt{c^2+d^2}\)
Mà \(\left(a+c\right)^2+\left(b+d\right)^2\)
\(=a^2+b^2+2\left(ac+bd\right)+c^2+d^2\)
\(\le\left(a^2+b^2\right)+2\sqrt{a^2+b^2}.\sqrt{c^2+d^2}+c^2+d^2\)
\(\Rightarrow\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\le\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\) (Đpcm)
Câu hỏi của Hoàng Khánh Linh - Toán lớp 8 - Học toán với OnlineMath copy nhớ ghi nguồn
Đk:\(x\ge\sqrt{15}\)
Đặt \(\sqrt{x^2-15}=a;\sqrt{x-3}=b\left(a,b>0\right)\)
Thì \(a^2+b^2=x^2+x-18\) khi đó
\(pt\Leftrightarrow a^2+b^2+1=ab+a+b\)
Áp dụng BĐT AM-GM ta có:
\(\left\{{}\begin{matrix}a^2+b^2\ge2\sqrt{a^2b^2}=2ab\\b^2+1\ge2\sqrt{b^2}=2b\\a^2+1\ge2\sqrt{a^2}=2a\end{matrix}\right.\)
Cộng theo vế rồi thu gọn 3 BĐT trên ta có:
\(VT=a^2+b^2+1\ge ab+a+b=VP\)
Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}a^2+b^2=2ab\\b^2+1=2b\\a^2+1=2a\end{matrix}\right.\)\(\Rightarrow a=b=1\)
\(\Rightarrow\left\{{}\begin{matrix}\sqrt{x^2-15}=1\\\sqrt{x-3}=1\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x^2-15=1\\x-3=1\end{matrix}\right.\Rightarrow x=4\left(x\ge\sqrt{15}\right)\)
cảm ơn bạn nhiều