K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2017

ok

24 tháng 2 2020

A B C D E F G H

a) Xét tam giác  ADB có: 

\(\frac{AE}{AB}=\frac{AH}{AD}\left(gt\right)\)

\(\Rightarrow HE//DB\left(1\right)\)( định lý Ta-let đảo )

Xét tam giác CDB có:

\(\frac{CF}{CB}=\frac{CG}{CD}\left(gt\right)\)

\(\Rightarrow GF//BD\left(2\right)\)

Từ (1) và (2) \(\Rightarrow HE//GF\)

CMTT\(HG//EF\)( cùng // AC)

Xét tứ giác EFGH có:

\(\hept{\begin{cases}HE//GF\left(cmt\right)\\HG//EF\left(cmt\right)\end{cases}\Rightarrow EFGH}\)là hình bình hành (dhnb)

b) 

Đặt\(\frac{AE}{AB}=\frac{AH}{AD}=\frac{CF}{CB}=\frac{CG}{CD}=k\)

Xét tam giác ADB có:

\(HE//BD\left(gt\right)\)

\(\Rightarrow\frac{HE}{BD}=\frac{AE}{AB}\)( hệ quả của định lý Ta-let)

\(\Rightarrow\frac{HE}{BD}=k\)( vì \(\frac{AE}{AB}=k\))

\(\Rightarrow HE=k.BD\)

Xét tam giác ABC có:

\(EF//AC\left(cmt\right)\)

\(\Rightarrow\frac{EF}{AC}=\frac{BE}{BA}\)( hệ quả của định lý Ta-let)

\(\Rightarrow\frac{EF}{AC}=\frac{AB-AE}{BA}=1-k\)

\(\Rightarrow EF=\left(1-k\right)AC\)

\(P_{EFGH}=2\left(HE+EF\right)\)

\(=2\left[k.BD+\left(1-k\right)AC\right]\)

\(=2AC\)không đổi  ( AC=BD do ABCD là hình chữ nhật )

Vậy chu vi của hbh EFGH có giá trị không đổi 

25 tháng 2 2020

bạn bảo châu ơi

AE=BF=CG=DH

=>EB=FC=DG=HA

Xét ΔAEH vuông tại A và ΔBFE vuông tại B có

AE=BF

AH=BE

=>ΔAEH=ΔBFE
=>EH=EF

Xét ΔBEF vuông tại B và ΔCFG vuông tại C có

BE=CF

BF=CG

=>ΔBEF=ΔCFG

=>EF=FG

Xét ΔFCG vuông tại C và ΔGDH vuông tại D có

CF=DG

CG=DH

=>ΔFCG=ΔGDH

=>FG=GH

=>EF=FG=GH=HE

ΔAHE=ΔBEF
=>góc AEH=góc BFE

=>góc AEH+góc BEF=90 độ

=>góc HEF=90 độ

Xét tứ giác EHGF có

EH=HG=GF=EF

góc HEF=90 độ

=>EHGF là hình vuông

30 tháng 11 2023

a: AE+EB=AB

BF+FC=BC

CG+GD=CD

DH+HA=DA

mà AB=BC=CD=DA và AE=BF=CG=DH

nên EB=FC=GD=HA

Xét ΔEAH vuông tại A và ΔGCF vuông tại C có

EA=GC

AH=CF

Do đó: ΔEAH=ΔGCF

=>EH=GF

Xét ΔEBF vuông tại B và ΔGDH vuông tại D có

EB=GD

BF=DH

Do đó: ΔEBF=ΔGDH

=>EF=GH

Xét ΔEAH vuông tại A và ΔFBE vuông tại B có

EA=FB

AH=BE

Do đó: ΔEAH=ΔFBE

=>EH=EF và \(\widehat{AEH}=\widehat{BFE}\)

\(\widehat{AEH}+\widehat{HEF}+\widehat{BEF}=180^0\)

=>\(\widehat{BFE}+\widehat{BEF}+\widehat{HEF}=180^0\)

=>\(\widehat{HEF}+90^0=180^0\)

=>\(\widehat{HEF}=90^0\)

Xét tứ giác EHGF có

EF=GH

EH=GF

Do đó: EHGF là hình bình hành

Hình bình hành EHGF có EF=EH

nên EHGF là hình thoi

Hình thoi EHGF có \(\widehat{HEF}=90^0\)

nên EHGF là hình vuông

b: 

AH+HD=AD

=>AH+1=4

=>AH=3(cm)

ΔAEH vuông tại A

=>\(AE^2+AH^2=EH^2\)

=>\(EH^2=3^2+1^2=10\)

=>\(EH=\sqrt{10}\left(cm\right)\)

EHGF là hình vuông

=>\(S_{EHGF}=EH^2=10\left(cm^2\right)\)