K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 9 2023

\(sina=\dfrac{1}{2}\left(0\le a\le\dfrac{\pi}{2}\right)\)

\(sin^2a+cos^2a=1\)

\(\Rightarrow cos^2a=1-sin^2a=1-\dfrac{1}{4}=\dfrac{3}{4}\)

\(\Rightarrow cosa=\dfrac{\sqrt[]{3}}{2}\) \(\left(0\le a\le\dfrac{\pi}{2}\Rightarrow cosa>0\right)\)

\(sin\left(a-\dfrac{\pi}{3}\right)\)

\(=sina.cos\dfrac{\pi}{3}+cosa.sin\dfrac{\pi}{3}\)

\(\)\(=\dfrac{1}{2}.\dfrac{1}{2}+\dfrac{\sqrt[]{3}}{2}.\dfrac{\sqrt[]{3}}{2}\)

\(\)\(=\dfrac{1}{4}+\dfrac{3}{4}=1\)

11 tháng 10 2023

2:

\(\Leftrightarrow\left\{{}\begin{matrix}u1+14d+u1+6d=60\\u1+11d+u1+3d=1170\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2u1+20d=60\\2u1+14d=1170\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}6d=-1110\\u1+10d=30\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}d=-185\\u1=30-10d=1880\end{matrix}\right.\)

1: 

\(PT\Leftrightarrow cos\left(3x-\dfrac{pi}{4}\right)=-\dfrac{\sqrt{2}}{2}\)

=>\(\left[{}\begin{matrix}3x-\dfrac{\Omega}{4}=\dfrac{3}{4}\Omega+k2\Omega\\3x-\dfrac{\Omega}{4}=-\dfrac{3}{4}\Omega+k2\Omega\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=\Omega+k2\Omega\\3x=-\dfrac{1}{2}\Omega+k2\Omega\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=\dfrac{\Omega}{3}+\dfrac{k2\Omega}{3}\\x=-\dfrac{1}{6}\Omega+\dfrac{k2\Omega}{3}\end{matrix}\right.\)

11 tháng 10 2023

Ta có :

\(\left\{{}\begin{matrix}u_{15}+u_7=60\\u_{12}+u_4=1170\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}u_1+14d+u_1+6d=60\\u_1+11d+u_1+3d=1170\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2u_1+20d=60\\2u_1+14d=1170\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-6d=1110\\2u_1+20d=60\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}d=-185\\u_1=30-10d\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}d=-185\\u_1=1880\end{matrix}\right.\)

14 tháng 11 2023

a:

Ta có:  \(SA\subset\left(SAB\right)\)

\(SA\subset\left(SAD\right)\)

Do đó: \(\left(SAB\right)\cap\left(SAD\right)=SA\)

b: Gọi O là giao điểm của AC và BD trong mp(ABCD)

\(O\in AC\subset\left(SAC\right)\)

\(O\in BD\subset\left(SBD\right)\)

Do đó: \(O\in\left(SAC\right)\cap\left(SBD\right)\)

mà \(S\in\left(SAC\right)\cap\left(SBD\right)\)

nên \(\left(SAC\right)\cap\left(SBD\right)=SO\)

c: Xét (SAD) và (SBC) có

\(S\in\left(SAD\right)\cap\left(SBC\right)\)

AD//BC

Do đó: (SAD) giao (SBC)=xy, xy đi qua S và xy//AD//BC

14 tháng 11 2023

CN=DN là điểm D nằm ở đâu vậy bạn?

AH
Akai Haruma
Giáo viên
21 tháng 11 2023

Đề mờ quá bạn.

21 tháng 11 2023

a: \(\lim\limits_{x\rightarrow+\infty}\dfrac{x^3+x^2-1}{-2x^3+1}\)

\(=\lim\limits_{x\rightarrow+\infty}\dfrac{1+\dfrac{1}{x}-\dfrac{1}{x^3}}{-2+\dfrac{1}{x^3}}=\dfrac{1}{-2}=-\dfrac{1}{2}\)

b: \(\lim\limits_{x\rightarrow-\infty}\left(x^5+3x^4-x+1\right)\)

\(=\lim\limits_{x\rightarrow-\infty}\left[x^5\left(1+\dfrac{3}{x}-\dfrac{1}{x^4}+\dfrac{1}{x^5}\right)\right]\)

\(=-\infty\) vì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow-\infty}x^5=-\infty\\\lim\limits_{x\rightarrow-\infty}1+\dfrac{3}{x}-\dfrac{1}{x^4}+\dfrac{1}{x^5}=1>0\end{matrix}\right.\)

NV
12 tháng 7 2021

1.

\(\Leftrightarrow1+2sin\dfrac{x}{2}cos\dfrac{x}{2}+\sqrt{3}cosx=3\)

\(\Leftrightarrow sinx+\sqrt{3}cosx=2\)

\(\Leftrightarrow\dfrac{1}{2}sinx+\dfrac{\sqrt{3}}{2}cosx=1\)

\(\Leftrightarrow cos\left(x-\dfrac{\pi}{6}\right)=1\)

\(\Leftrightarrow x-\dfrac{\pi}{6}=k2\pi\)

\(\Leftrightarrow x=\dfrac{\pi}{6}+k2\pi\)

2.

\(cos2x=-1\)

\(\Leftrightarrow2x=\pi+k2\pi\)

\(\Leftrightarrow x=\dfrac{\pi}{2}+k\pi\)

NV
12 tháng 7 2021

3.

\(\left(2sinx-cosx\right)\left(1+cosx\right)=\left(1+cosx\right)\left(1-cosx\right)\)

\(\Leftrightarrow\left(1+cosx\right)\left(2sinx-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=-1\\sinx=\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\pi+k2\pi\\x=\dfrac{\pi}{6}+k2\pi\\x=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)

Nghiệm dương nhỏ nhất là \(x=\dfrac{\pi}{6}\)

4.

\(1-cos2x-1-cos6x=0\)

\(\Leftrightarrow cos6x=-cos2x=cos\left(\pi-2x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}6x=\pi-2x+k2\pi\\6x=2x-\pi+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{8}+\dfrac{k\pi}{4}\\x=-\dfrac{\pi}{4}+\dfrac{k\pi}{2}\end{matrix}\right.\)

Pt có 6 nghiệm trên khoảng đã cho

NV
12 tháng 7 2021

6.

\(sin3x+cos2x=1+sin3x-sinx\)

\(\Leftrightarrow cos2x=1-sinx\)

\(\Leftrightarrow1-2sin^2x=1-sinx\)

\(\Leftrightarrow2sin^2x-sinx=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\sinx=\dfrac{1}{2}\end{matrix}\right.\)

7.

\(\sqrt{2}sinx-2\sqrt{2}cosx=2-2sinx.cosx\)

\(\Leftrightarrow\sqrt{2}sinx\left(\sqrt{2}cosx+1\right)-2\left(\sqrt{2}cosx+1\right)=0\)

\(\Leftrightarrow\left(\sqrt{2}sinx-2\right)\left(\sqrt{2}cosx+1\right)=0\)

\(\Leftrightarrow cosx=-\dfrac{\sqrt{2}}{2}\)

\(\Leftrightarrow x=\pm\dfrac{3\pi}{4}+k2\pi\)

\(\left(\dfrac{3\pi}{4}\right).\left(-\dfrac{3\pi}{4}\right)=-\dfrac{9\pi^2}{16}\)

NV
12 tháng 7 2021

8.

\(2sinx.cosx+3cosx=0\)

\(\Leftrightarrow cosx\left(2sinx+3\right)=0\)

\(\Leftrightarrow cosx=0\)

\(\Rightarrow x=\dfrac{\pi}{2}+k\pi\)

\(\Rightarrow x=\dfrac{\pi}{2}\) có 1 nghiệm trong khoảng đã cho

9.

\(cos2x\ne0\Leftrightarrow2x\ne\dfrac{\pi}{2}+k\pi\)

\(\Rightarrow x\ne\dfrac{\pi}{4}+\dfrac{k\pi}{2}\) 

Đáp án D