K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2021

`(x^4-1)^2+(x^2+1)^2`

`=x^8-2x^4+1+x^4+2x^2+1`

`=x^8-x^4+2x^2+2`

25 tháng 6 2021

\(\left(x^4-1\right)^2+\left(x^2+1\right)^2=\left(x^2-1\right)^2.\left(x^2+1\right)^2+\left(x^2+1\right)^2\)

\(=\left(x^2+1\right)^2\left[\left(x^2-1\right)^2+1\right]=\left(x^2+1\right)^2\left(x^4-2x^2+2\right)\)

ĐKXĐ: \(x\notin\left\{1;-1\right\}\)

Ta có: \(\dfrac{x-3}{x+1}=\dfrac{x^2}{x^2-1}\)

\(\Leftrightarrow\dfrac{\left(x-3\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}=\dfrac{x^2}{\left(x-1\right)\left(x+1\right)}\)

Suy ra: \(x^2-4x+3-x^2=0\)

\(\Leftrightarrow-4x=-3\)

hay \(x=\dfrac{3}{4}\)(thỏa ĐK)

Vậy: \(S=\left\{\dfrac{3}{4}\right\}\)

8 tháng 12 2018

Có ai giúp tôi với😭😭😭😭😭

3 tháng 8 2019

Có : 

b) (x - 8)(x + 8) = (x - 4)(x2 + 4x + 16)

  x2 - 82 = x3 - 43

x2 - 2^6 - x3 + 2 = 0

x2 . ( x - 1 ) = 0

x = 0 hoặc x-1 = 0

x= 0 hoặc x = 1

 Vâỵ....

12 tháng 11 2021

x=-6/19 (^-^)b

27 tháng 11 2018

\(A=\frac{x^3-3x^2-7x-15}{x^5-x^4-10x^3-38x^2-51x-45}\)

\(=\frac{x^2\left(x-5\right)+2x\left(x-5\right)+3\left(x-5\right)}{x^4\left(x-5\right)+4x^3\left(x-5\right)+10x^2\left(x-5\right)+12x\left(x-5\right)+9\left(x-5\right)}\)

\(=\frac{\left(x-5\right)\left(x^2+2x+3\right)}{\left(x-5\right)\left(x^4+4x^3+10x^2+12x+9\right)}\)

\(=\frac{x^2+2x+3}{x^4+4x^3+10x^2+12x+9}\)

\(=\frac{x^2+2x+3}{\left(x^2\right)^2+2.x^2.2x+\left(2x\right)^2+6x^2+12x+9}\)

\(=\frac{x^2+2x+3}{\left(x^2+2x\right)^2+2.\left(x^2+2x\right).3+3^2}\)

\(=\frac{\left(x^2+2x+3\right)}{\left(x^2+2x+3\right)^2}=\frac{1}{x^2+2x+3}\)

b, \(A=\frac{1}{x^2+2x+3}=\frac{1}{\left(x+1\right)^2+2}\le\frac{1}{2}\forall x\)

Dấu "=" xảy ra khi: \(x+1=0\Rightarrow x=-1\)

Vậy GTLN của A là \(\frac{1}{2}\) khi x = -1

b: \(\Leftrightarrow2\left(x^2-2x+1\right)-3x^2+5x-1=0\)

\(\Leftrightarrow2x^2-4x+2-3x^2+5x-1=0\)

\(\Leftrightarrow-x^2+x+1=0\)

\(\Leftrightarrow x^2-x-1=0\)

\(\text{Δ}=\left(-1\right)^2-4\cdot1\cdot\left(-1\right)=5\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{1-\sqrt{5}}{2}\\x_2=\dfrac{1+\sqrt{5}}{2}\end{matrix}\right.\)

c: \(\Leftrightarrow x^2+6x+9-1-\left(x^2+8x-4x-32\right)=0\)

\(\Leftrightarrow x^2+6x+8-x^2-4x+32=0\)

=>2x+40=0

hay x=-20

d: \(\Leftrightarrow3x^2+12x+12+4x^2-4x+1-7\left(x^2-9\right)=36\)

\(\Leftrightarrow7x^2+8x+13-7x^2+63=36\)

=>8x+76=36

hay x=-5