Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2A=1-1/2+1/2^2-...+1/2^98-1/2^99
=>3A=1-1/2^100
=>\(A=\dfrac{2^{100}-1}{3\cdot2^{100}}\)
a)
\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{30^2}\\ < \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{29.30}\\ =1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{29}-\dfrac{1}{30}\\ =1-\dfrac{1}{30}=\dfrac{29}{30}< 1\left(dpcm\right)\)
b)
\(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}+...+\dfrac{1}{99}+\dfrac{1}{100}=\dfrac{1}{10}+\left(\dfrac{1}{11}+\dfrac{1}{12}+...+\dfrac{1}{99}+\dfrac{1}{100}\right)\\ >\dfrac{1}{10}+\dfrac{1}{100}+\dfrac{1}{100}+...+\dfrac{1}{100}=\dfrac{1}{10}+\dfrac{90}{100}\\ =\dfrac{110}{100}>1\left(đpcm\right).\)
c)
\(\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+...+\dfrac{1}{17}\\ =\left(\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{9}\right)+\left(\dfrac{1}{10}+\dfrac{1}{11}+...+\dfrac{1}{17}\right)\\ < \dfrac{1}{5}.5+\dfrac{1}{8}.8=1+1=2\left(đpcm\right)\)
d) tương tự câu 1
1) \(\dfrac{2}{15}\cdot6\dfrac{5}{11}+\dfrac{5}{11}\cdot\dfrac{-2}{15}-\dfrac{2}{15}\cdot2015^0\)
\(=\dfrac{2}{15}\cdot\dfrac{71}{11}-\dfrac{1}{11}\cdot\dfrac{2}{3}-\dfrac{2}{15}\cdot1\)
\(=\dfrac{142}{165}-\dfrac{2}{33}-\dfrac{2}{15}\)
\(=\dfrac{2}{3}\)
2) \(\dfrac{5}{2\cdot7}+\dfrac{3}{14\cdot11}+\dfrac{4}{11\cdot7}+\dfrac{1}{14\cdot15}+\dfrac{13}{15\cdot16}\)
\(=\dfrac{5}{14}+\dfrac{3}{154}+\dfrac{4}{77}+\dfrac{1}{210}+\dfrac{13}{240}\)
\(=\dfrac{39}{80}\)
Đặt \(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{99^2}+\dfrac{1}{100^2}\)
\(< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{98.99}+\dfrac{1}{99.100}\)
\(B=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{98.99}+\dfrac{1}{99.100}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=1-\dfrac{1}{100}=\dfrac{99}{100}\) \(\Rightarrow A< \dfrac{99}{100}\)
\(1-\dfrac{1}{2^2}-\dfrac{1}{3^2}-...-\dfrac{1}{100^2}=1-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}\right)=1-A>\dfrac{1}{100}\)
Đặt biểu thức trong ngoặc đơn là B
\(5B=1+\dfrac{1}{5}+\dfrac{1}{5^2}+...+\dfrac{1}{5^{98}}+\dfrac{1}{5^{99}}\)
\(\Rightarrow4B=5B-B=1-\dfrac{1}{5^{100}}\Rightarrow B=\dfrac{1}{4}\left(1-\dfrac{1}{5^{100}}\right)\)
\(\Rightarrow A=4.5^{100}.\dfrac{1}{4}\left(\dfrac{5^{100}-1}{5^{100}}\right)+1=\)
\(=5^{100}\)
Bài này dễ nên nãy không có định làm, nhưng mà nghĩ lại thôi làm vậy:Đ
a/ \(\dfrac{x}{-2}=\dfrac{-4}{y}=\dfrac{2}{4}\)
Ta có: \(\dfrac{-4}{y}=\dfrac{2}{4}\Rightarrow y=\dfrac{-4.4}{2}=-8\)
\(\dfrac{x}{-2}=\dfrac{-4}{y}=\dfrac{-4}{-8}=\dfrac{1}{2}\Rightarrow x=\dfrac{-2.1}{2}=-1\)
b/\(\dfrac{2}{x}=\dfrac{y}{-3}\Rightarrow xy=-3.2=-6\)
\(\Rightarrow x;y\inƯ\left(-6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
Ta có bảng giá trị của x, y như sau:
x | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
y | -6 | 6 | -3 | 3 | -2 | 2 | -1 | 1 |
c/ \(\dfrac{x+1}{2}=\dfrac{8}{x+1}\Rightarrow\left(x+1\right)^2=2.8=16\)
\(\Rightarrow\left[{}\begin{matrix}\left(x+1\right)^2=4^2\\\left(x+1\right)^2=\left(-4\right)^2\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x+1=4\\x+1=-4\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=3\\x=-5\end{matrix}\right.\)
a, \(\dfrac{x-1}{21}\) = \(\dfrac{3}{x+1}\)
( x-1)(x+1) = 21.3
x2 + x - x -1 = 63
x2 = 63 + 1
x2 = 64
x = + - 8
b, 2\(\dfrac{1}{2}\)x + x = 2\(\dfrac{1}{17}\)
x( \(\dfrac{5}{2}\) + 1) = \(\dfrac{35}{17}\)
x = \(\dfrac{35}{17}\) : ( \(\dfrac{5}{2}\)+1)
x = \(\dfrac{35}{17}\) x \(\dfrac{2}{7}\)
x = \(\dfrac{10}{17}\)
c, (x + \(\dfrac{1}{4}\) - \(\dfrac{2}{3}\) ) : ( 2 + \(\dfrac{1}{6}\) - \(\dfrac{1}{4}\)) = \(\dfrac{7}{46}\)
(x - \(\dfrac{5}{12}\)): \(\dfrac{23}{12}\) = \(\dfrac{7}{46}\)
(x - \(\dfrac{5}{12}\)) = \(\dfrac{7}{46}\) x \(\dfrac{23}{12}\)
x - \(\dfrac{5}{12}\) = \(\dfrac{7}{12}\)
x = \(\dfrac{7}{12}\) + \(\dfrac{5}{12}\)
x = 1
d, 2\(\dfrac{1}{3}\)x - 1\(\dfrac{3}{4}\)x + \(2\dfrac{2}{3}\) = 3\(\dfrac{3}{5}\)
x( \(\dfrac{7}{3}\) - \(\dfrac{7}{4}\)) + \(\dfrac{8}{3}\) = \(\dfrac{18}{5}\)
x\(\dfrac{7}{12}\) = \(\dfrac{18}{5}\) - \(\dfrac{8}{3}\)
x\(\dfrac{7}{12}\) = \(\dfrac{14}{15}\)
x = \(\dfrac{14}{15}\) : \(\dfrac{7}{12}\)
x = \(\dfrac{8}{5}\)
A = 1/2 - 1/2² + 1/2³ - 1/2⁴ + ... + 1/2⁹⁹ - 1/2¹⁰⁰
2A = 1 - 1/2 + 1/2² - 1/2³ + ... + 1/2⁹⁸ - 1/2⁹⁹
3A = 2A + A
= (1 - 1/2 + 1/2² - 1/2³ + ... + 2⁹⁸ - 2⁹⁹) - (1/2 - 1/2² + 1/2³ - 1/2⁴ + ... + 1/2⁹⁹ - 1/2¹⁰⁰)
= 1 - 1/2¹⁰⁰
A = (1 - 1/2¹⁰⁰) : 2