Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x}{3}-2=\dfrac{1}{15}\)
=>\(\dfrac{x}{3}=2+\dfrac{1}{15}=\dfrac{31}{15}\)
=>\(x=\dfrac{31}{15}\cdot3=\dfrac{31}{5}\)
a: Xét ΔOMA và ΔOMB có
OM chung
MA=MB
OA=OB
Do đó: ΔOMA=ΔOMB
Suy ra: \(\widehat{AOM}=\widehat{BOM}\)
hay OM là tia phân giác của góc xOy
b: Xét tứ giác OMAP có
N là trung điểm của OA
N là trung điểm của MP
Do đó: OMAP là hình bình hành
Suy ra: OP=AM và OP//AM
Bài 1: Tính B = 1 + 2 + 3 + ... + 98 + 99
Lời giải:
Cách 1:
B = 1 + (2 + 3 + 4 + ... + 98 + 99).
Ta thấy tổng trong ngoặc gồm 98 số hạng, nếu chia thành các cặp ta có 49 cặp nên tổng đó là:
(2 + 99) + (3 + 98) + ... + (51 + 50) = 49.101 = 4949
Khi đó B = 1 + 4949 = 4950
Lời bình: Tổng B gồm 99 số hạng, nếu ta chia các số hạng đó thành cặp (mỗi cặp có 2 số hạng thì được 49 cặp và dư 1 số hạng, cặp thứ 49 thì gồm 2 số hạng nào? Số hạng dư là bao nhiêu?), đến đây học sinh sẽ bị vướng mắc.
Ta có thể tính tổng B theo cách khác như sau:
Cách 2:
Bài 2: Tính C = 1 + 3 + 5 + ... + 997 + 999
Lời giải:
Cách 1:
Từ 1 đến 1000 có 500 số chẵn và 500 số lẻ nên tổng trên có 500 số lẻ. Áp dụng các bài trên ta có C = (1 + 999) + (3 + 997) + ... + (499 + 501) = 1000.250 = 250.000 (Tổng trên có 250 cặp số)
Cách 2: Ta thấy:
1= 2.1 - 1
3 = 2.2 - 1
5 = 2.3 - 1
...
999 = 2.500 - 1
Quan sát vế phải, thừa số thứ 2 theo thứ tự từ trên xuống dưới ta có thể xác định được số các số hạng của dãy số C là 500 số hạng.
Áp dụng cách 2 của bài trên ta có:
Bài 3. Tính D = 10 + 12 + 14 + ... + 994 + 996 + 998
Nhận xét: Các số hạng của tổng D đều là các số chẵn, áp dụng cách làm của bài tập 3 để tìm số các số hạng của tổng D như sau:
Ta thấy:
10 = 2.4 + 2
12 = 2.5 + 2
14 = 2.6 + 2
...
998 = 2 .498 + 2
Tương tự bài trên: từ 4 đến 498 có 495 số nên ta có số các số hạng của D là 495, mặt khác ta lại thấy: 495 = (998 - 10)/2 + 1 hay số các số hạng = (số hạng đầu - số hạng cuối) : khoảng cách rồi cộng thêm 1
Khi đó ta có:
D = 10 + 12 = ... + 996 + 998 | |
+ | D = 998 + 996 ... + 12 + 10 |
2D = 1008 1008 + ... + 1008 + 1008 |
2D = 1008.495 → D = 504.495 = 249480
Thực chất D = (998 + 10).495 / 2
Qua các ví dụ trên, ta rút ra một cách tổng quát như sau: Cho dãy số cách đều u1, u2, u3, ... un (*), khoảng cách giữa hai số hạng liên tiếp của dãy là d.
Khi đó số các số hạng của dãy (*) là:
Tổng các số hạng của dãy (*) là:
Đặc biệt từ công thức (1) ta có thể tính được số hạng thứ n của dãy (*) là: un = u1 + (n - 1)d
Hoặc khi u1 = d = 1 thì
tick nha
ồ mik là học sinh nữ nhưng mik đâu có đăng hình nền mặc bikini đâu?
\(a.\left|-2x+1,5\right|=\frac{1}{4}\)
\(\Rightarrow\)\(-2x+1,5=\frac{1}{4}\)hoặc \(-\frac{1}{4}\)
\(\Rightarrow\)\(-2x=-\frac{5}{4}\)hoặc \(-\frac{7}{4}\)
\(\Rightarrow\)\(x=\frac{5}{8}\)hoặc \(\frac{7}{8}\)
Vậy x \(\in\){ ..... }
\(b.\frac{3}{2}-\left|1\frac{1}{4}+3x\right|=\frac{1}{4}\)
\(\left|\frac{5}{4}+3x\right|=\frac{3}{2}-\frac{1}{4}\)
\(\left|\frac{5}{4}+3x\right|=\frac{5}{4}\)
\(\Rightarrow\)\(\frac{5}{4}+3x=\frac{5}{4}\)hoặc \(-\frac{5}{4}\)
\(\Rightarrow\)\(3x=0\)hoặc \(\frac{-5}{2}\)
\(\Rightarrow\)\(x=0\)hoặc \(\frac{-5}{6}\)
Vậy x \(\in\){ ...... }