K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2018

\(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)....\left(1-\frac{1}{100}\right)\)

\(=\frac{1}{2}\cdot\frac{2}{3}\cdot\cdot\cdot\cdot\frac{99}{100}\)

\(=\frac{1.2....99}{2.3....100}=\frac{1}{100}\)

A=(1-1/2)(1-1/3)(1-1/4)....(1-1/100)

A=1/2.2/3.3/4.....99/100

A=(1.2.3....99)/(2.3.4.....100)

A=1/100

29 tháng 6 2016

A = 1 + 3 + 3^2 + ...+ 3 ^100

3A = 3 + 3 ^2 + 3^3 + ... +3^101

3A - A =  ( 3 + 3 ^2 + 3^3 + ... +3^101)

            -  ( 1 + 3 + 3^2 + ...+ 3 ^100)

2A = 3 ^101 - 1

A = \(\frac{\text{ 3 ^101 - 1}}{2}\)

29 tháng 6 2016

Ta có: 

A= \(1+3+3^2+...+3^{100}\)

3A=\(3\times\left(1+3+3^2+...+3^{100}\right)\)

3A=\(3+3^2+3^3+...+3^{101}\)

\(3A-A=\left(3+3^2+3^3+...+3^{101}\right)-\)(1+3+3^2+...+3^100)

2A=1+3^101

A=(1+3^101)/2

30 tháng 8 2018

ta có: \(1-\frac{1}{2^2}-\frac{1}{3^2}-\frac{1}{4^2}-...-\frac{1}{100^2}=1-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)\)

Lại có: \(\frac{1}{2^2}>\frac{1}{2.3};\frac{1}{3^2}>\frac{1}{3.4};\frac{1}{4^2}>\frac{1}{4.5};...;\frac{1}{100^2}>\frac{1}{100.101}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}>\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{100.101}\)

                                                                               \(=\frac{1}{2}-\frac{1}{101}\)

\(\Rightarrow1-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)>1-\left(\frac{1}{2}-\frac{1}{101}\right)=1-\frac{1}{2}+\frac{1}{101}\)

                                                                                                                                 \(=\frac{1}{2}+\frac{1}{101}\)

mà \(\frac{1}{2}=\frac{50}{100}>\frac{1}{100}\Rightarrow\frac{1}{2}+\frac{1}{101}>\frac{1}{100}\)

=> đ p c m

24 tháng 2 2019

\(A=\left(\frac{1}{16}-1\right)\left(\frac{1}{25}-1\right)\left(\frac{1}{36}-1\right)...\left(\frac{1}{100}-1\right)\)

\(-A=\left(1-\frac{1}{16}\right)\left(1-\frac{1}{25}\right)\left(1-\frac{1}{36}\right)...\left(1-\frac{1}{100}\right)\)

\(-A=\frac{15}{16}\cdot\frac{24}{25}\cdot\frac{35}{36}\cdot...\cdot\frac{99}{100}\)

\(-A=\frac{\left(3\cdot5\right)\left(4\cdot6\right)\left(5\cdot7\right)...\left(9\cdot11\right)}{\left(4\cdot4\right)\left(5\cdot5\right)\left(6\cdot6\right)...\left(10\cdot10\right)}\)

\(-A=\frac{\left(3\cdot4\cdot5\cdot...\cdot9\right)\left(5\cdot6\cdot7\cdot...\cdot11\right)}{\left(4\cdot5\cdot6\cdot...\cdot10\right)\left(4\cdot5\cdot6\cdot...\cdot10\right)}\)

\(-A=\frac{3\cdot11}{10\cdot4}=\frac{33}{40}\)

\(A=-\frac{33}{40}\)

15 tháng 6 2017

Ta có:

\(\left(\frac{1}{5}+\frac{1}{3}+\frac{3}{10}\right)+-\frac{1}{2}=\frac{1}{5}+\frac{1}{3}+\frac{3}{10}\)\(-\frac{1}{2}\)

=\(\frac{6}{30}+\frac{10}{30}+\frac{9}{30}-\frac{15}{30}=\frac{6+10+9-15}{30}=\frac{10}{30}=\frac{1}{3}\)