K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2018

\(a.A=\dfrac{x}{\sqrt{x}-1}-\dfrac{2x-\sqrt{x}}{x-\sqrt{x}}=\dfrac{x}{\sqrt{x}-1}-\dfrac{\sqrt{x}\left(2\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}=\dfrac{x-2\sqrt{x}+1}{\sqrt{x}-1}=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}=\sqrt{x-1}\) \(b.x=3+2\sqrt{2}\left(TM\right)\)

Khi đó , ta có : \(A=\sqrt{3+2\sqrt{2}-1}=\sqrt{2+2\sqrt{2}}\)

23 tháng 10 2021

a: \(A=\dfrac{x}{\sqrt{x}-1}-\dfrac{2x-\sqrt{x}}{x-\sqrt{x}}\)

\(=\dfrac{x-2\sqrt{x}+1}{\sqrt{x}-1}\)

\(=\sqrt{x}-1\)

23 tháng 10 2021

a) \(A=\dfrac{x}{\sqrt{x}-1}-\dfrac{2x-\sqrt{x}}{x-\sqrt{x}}\)

                        Đk: \(x>0\) và \(x\ne1\)

\(\Rightarrow A=\dfrac{x}{\sqrt{x}-1}-\dfrac{2x-\sqrt{x}}{x-\sqrt{x}}\)

        \(=\dfrac{x}{\sqrt{x}-1}-\dfrac{2x-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

        \(=\dfrac{x\sqrt{x}-2x+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}\left(x-2\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

        \(=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}=\sqrt{x}-1\)

b) Thay \(x=3+2\sqrt{2}\) vào A ta được:

  \(A=\sqrt{3+2\sqrt{2}}-1=\sqrt{\left(\sqrt{2}+1\right)^2}-1\)

      \(=\sqrt{2}+1-1=\sqrt{2}\)

(Vì \(\sqrt{2}+1>0\Rightarrow\sqrt{\left(\sqrt{2}+1\right)^2}=\sqrt{2}+1\))

12 tháng 8 2021

a)A=\(\dfrac{x-4\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-2\right)}=\dfrac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}\left(\sqrt{x}-2\right)}\)=\(\dfrac{\sqrt{x}-2}{\sqrt{x}}\)

b) Thay x=3+2\(\sqrt{2}\)

A=\(\dfrac{\sqrt{3+2\sqrt{2}}-2}{\sqrt{3+2\sqrt{2}}}\)=\(\dfrac{\sqrt{\left(\sqrt{2}+1\right)^2-2}}{\sqrt{\left(\sqrt{2}+1\right)^2}}\)=\(\dfrac{\sqrt{2}+1-2}{\sqrt{2}+1}\)

A=\(\dfrac{\sqrt{2}-1}{\sqrt{2}+1}\)

c)Ta có \(\dfrac{\sqrt{x}-2}{\sqrt{x}}=1-\dfrac{2}{\sqrt{x}}\)>0

\(\Rightarrow\dfrac{2}{\sqrt{x}}\)<1\(\Rightarrow\sqrt{x}\)>2\(\Rightarrow x>4\)

13 tháng 8 2021

thank

AH
Akai Haruma
Giáo viên
28 tháng 12 2023

Lời giải:

a.

\(B=\frac{2\sqrt{x}(\sqrt{x}-3)+\sqrt{x}(\sqrt{x}+3)-2x}{(\sqrt{x}+3)(\sqrt{x}-3)}=\frac{x-3\sqrt{x}}{(\sqrt{x}-3)(\sqrt{x}+3)}=\frac{\sqrt{x}(\sqrt{x}-3)}{(\sqrt{x}+3)(\sqrt{x}-3)}=\frac{\sqrt{x}}{\sqrt{x}+3}\)

b.

\(P=AB=\frac{\sqrt{x}-2}{\sqrt{x}}.\frac{\sqrt{x}}{\sqrt{x}+3}=\frac{\sqrt{x}-2}{\sqrt{x}+3}\)

Để $P<0\Leftrightarrow \frac{\sqrt{x}-2}{\sqrt{x}+3}<0$

Mà $\sqrt{x}+3>0$ nên $\sqrt{x}-2<0$

$\Leftrightarrow 0< x< 4$

Kết hợp với ĐKXĐ suy ra $0< x< 4$

Mà $x$ nguyên nên $x\in left\{1; 2; 3\right\}$

 

12 tháng 11 2023

 `a,`

\(B=\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\right):\dfrac{\sqrt{x}}{\sqrt{x}-1}\\ =\left(\dfrac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\cdot\dfrac{\sqrt{x}-1}{\sqrt{x}}\\ =\dfrac{x+2\sqrt{x}+1-\left(x-2\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}-1}{\sqrt{x}}\\ =\dfrac{x+2\sqrt{x}+1-x+2\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}-1}{\sqrt{x}}\\ =\dfrac{4\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}-1}{\sqrt{x}}\)

\(=\dfrac{4}{\sqrt{x}+1}\)

`b,` Để `A *B<0` ta có :

\(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\cdot\dfrac{4}{\sqrt{x}+1}< 0\\ \Leftrightarrow\dfrac{4}{\sqrt{x}-1}< 0\\ \Leftrightarrow\sqrt{x}-1< 0\left(vì.4>0\right)\\ \Leftrightarrow\sqrt{x}< 1\\ \Leftrightarrow0\le x< 1\)

Kết hợp với đkxđ ta có : \(0< x< 1\)

Sửa đề: \(P=\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}}{x-2\sqrt{x}+1}\)

a) Ta có: \(P=\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}}{x-2\sqrt{x}+1}\)

\(=\left(\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\dfrac{\sqrt{x}}{\left(\sqrt{x}-1\right)^2}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}\)

\(=\dfrac{x-1}{x}\)

b) Sửa đề: \(2\sqrt{x+1}=5\)

Ta có: \(2\sqrt{x+1}=5\)

\(\Leftrightarrow\sqrt{x+1}=\dfrac{5}{2}\)

\(\Leftrightarrow x+1=\dfrac{25}{4}\)

hay \(x=\dfrac{21}{4}\)(thỏa ĐK)

Thay \(x=\dfrac{21}{4}\) vào biểu thức \(P=\dfrac{x-1}{x}\), ta được:

\(P=\left(\dfrac{21}{4}-1\right):\dfrac{21}{4}=\dfrac{17}{4}\cdot\dfrac{4}{21}=\dfrac{17}{21}\)

Vậy: Khi \(2\sqrt{x+1}=5\) thì \(P=\dfrac{17}{21}\)

c) Để \(P>\dfrac{1}{2}\) thì \(P-\dfrac{1}{2}>0\)

\(\Leftrightarrow\dfrac{x-1}{x}-\dfrac{1}{2}>0\)

\(\Leftrightarrow\dfrac{2\left(x-1\right)}{2x}-\dfrac{x-1}{2x}>0\)

mà \(2x>0\forall x\) thỏa mãn ĐKXĐ

nen \(2\left(x-1\right)-x+1>0\)

\(\Leftrightarrow2x-2-x+1>0\)

\(\Leftrightarrow x-1>0\)

hay x>1

Kết hợp ĐKXĐ, ta được: x>1

Vậy: Để \(P>\dfrac{1}{2}\) thì x>1

14 tháng 5 2023

`a)A=[2\sqrt{3}+2-2\sqrt{3}+2]/[(2\sqrt{3}-2)(2\sqrt{3}+2)]`

   `A=4/[12-4]=1/2`

Với `x > 0,x ne 1` có:

`B=[x-2\sqrt{x}+1]/[\sqrt{x}(\sqrt{x}-1)]`

`B=[(\sqrt{x}-1)^2]/[\sqrt{x}(\sqrt{x}-1)]=[\sqrt{x}-1]/\sqrt{x}`

`b)B=2/5A`

`=>[\sqrt{x}-1]/\sqrt{x}=2/5 . 1/2`

`<=>5\sqrt{x}-5=\sqrt{x}`

`<=>\sqrt{x}=5/4`

`<=>x=25/16` (t/m)

22 tháng 10 2023