Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gỉa sử n2+2014 là số chính phương.Đặt n2+2014=a2
=>2014=a2-n2
=>2014=(a-n).(a+n)
=>(a-n).(a+n) chia hết cho 2 mà 2 là số nguyên tố
=>a-n hoặc a+n chia hết cho 2
Mà a-n+a+n=2a chia hết cho 2
=>a-n và a+n đều chia hết cho 2
=>(a-n).(a+n) chia hết cho 4 hay 2014 chia hết cho 4
Mà 2014 không chia hết cho 4
=>Không tìm được n thỏa mãn hay n2+2014 không phải số chính phương với n nguyên dương.
Vậy n2+2014 không phải số chính phương với n nguyên dương.
Trước hết ta thấy 2014 chia 4 dư2
n^2 chia 4 dư 0 hoặc 1
Suy ra n^2+2014 chia 4 dư 2 hoặc 3.Mà số chính phương chỉ có số dư là 1 hoặc 0 khi chia cho 4 nên n^2+2014 ko phải số chính phương
Ta có điều phải chứng minh.
Chọn đúng cho mình nha
a) Gọi 4 số tự nhiên liên tiếp đó là: n ; n+1; n+2; n+3 (n thuộc N)
Ta có: \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1=n\left(n+3\right)\left(n+1\right)\left(n+2\right)+1\)
\(=\left(n^2+3n\right)\left(n^2+3n+2\right)+1\left(\cdot\right)\)
Đặt n2 + 3n = t (t thuộc N) thì \(\left(\cdot\right)=t\left(t+2\right)+1=t^2+2t+1=\left(t+1\right)^2=\left(n^2+3n+1\right)^2\)
Vì n thuộc N nên (n2+3n+1) thuộc N
=> Vậy n(n+1)(n+2)(n+3)+1 là 1 số chính phương
tính giá trị của biểu thức
a, 2x^2(ax^2+2bx+4c)=6x^4-20x^3-8x^2 với mọi x
b, (ax+b)(x^2-cx+2)=x^3+x^2-2 với mọi x
Đặt n+6=a2 n+1=b2 (a,b dương a>b)
=> \(a^2-b^2=5\)=> \(\left(a+b\right)\left(a-b\right)=5\)=> \(\hept{\begin{cases}a+b=5\\a-b=1\end{cases}}\)=> \(\hept{\begin{cases}a=3\\b=2\end{cases}}\)=>\(n=3^2-6=2^2-1=3\)
Mình làm đại đó,ahihi :v
Mình mới lớp 5 thôi nhưng mình sẽ cho bạn 1 câu trả lời
Số 3
Xin lỗi bạn nhé mong bạn thông cảm
Đặt \(n+6=a^2;n+1=b^2\)Ta có:
\(a^2-b^2=\left(n+6\right)-\left(n+1\right)\)
\(\Leftrightarrow\left(a+b\right)\left(a-b\right)=5\)
Ta có bảng:
a+b | 1 | 5 | -1 | -5 |
a-b | 5 | 1 | -5 | -1 |
a | 3 | 3 | -3 | -3 |
b | 2 | -2 | -2 | 2 |
a2=n+6 | 9 | 9 | 9 | 9 |
b2=n+1 | 4 | 4 | 4 | 4 |
n | 3 | 3 | 3 | 3 |
Thỏa mãn | Thỏa mãn | Thỏa mãn | Thỏa mãn |
Vậy n=3