\(\tex...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2020

Ta có: \(A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\)

\(\ge\frac{4}{x^2+2xy+y^2}+\frac{1}{\frac{\left(x+y\right)^2}{2}}=\frac{4}{\left(x+y\right)^2}+\frac{2}{\left(x+y\right)^2}\)

\(=\frac{6}{\left(x+y\right)^2}=6\)

Đẳng thức xảy ra khi \(x=y=\frac{1}{2}\)

30 tháng 7 2020

Bài làm:

Ta có: \(x+y\ge2\sqrt{xy}\)(bất đẳng thức Cauchy)

\(\Leftrightarrow\sqrt{xy}\le\frac{x+y}{2}\)

\(\Leftrightarrow xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\)

Áp dụng bất đẳng thức Cauchy Schwars ta được:

\(A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{1}{2xy}\)

\(\ge\frac{\left(1+1\right)^2}{x^2+2xy+y^2}+\frac{1}{2.\frac{1}{4}}=\frac{4}{\left(x+y\right)^2}+\frac{1}{\frac{1}{2}}\)

\(=\frac{4}{1^2}+2=6\)

Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)

13 tháng 2 2020

Ta chứng minh:  \(x^2+y^2+z^2\ge xy+yz+zx\)

Thật vậy \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\forall x,y,z\)

\(\Rightarrow2x^2+2y^2+2z^2-2xy-2yz-2zx\ge0\)

\(\Rightarrow2x^2+2y^2+2z^2\ge2xy+2yz+2zx\)

\(\Rightarrow x^2+y^2+z^2\ge xy+yz+zx\left(đpcm\right)\)

Áp dụng BĐT Svacxo, ta có:

\(\text{ Σ}_{cyc}\frac{1}{1+xy}\ge\frac{\left(1+1+1\right)^2}{3+xy+yz+zx}=\frac{9}{3+xy+yz+zx}\)

\(\ge\frac{9}{3+x^2+y^2+z^2}\ge\frac{9}{3+3}=\frac{3}{2}\)

(Dấu "="\(\Leftrightarrow x=y=z=1\))

13 tháng 2 2020

Theo hệ quả của bất đẳng thức Cauchy ta có :
\(\left(x+y+z\right)^2\ge3\left(xy+yz+xz\right)\)

Do \(x^2+y^2+z^2\le3\)

\(\Rightarrow3\ge3\left(xy+yz+xz\right)\)

\(\Rightarrow1\ge xy+yz+xz\)

\(\Rightarrow4\ge xy+yz+xz+3\)

\(\Rightarrow\frac{9}{4}\le\frac{9}{3+xy+xz+yz}\left(1\right)\)

Ta có : \(C=\frac{1}{1+xy}+\frac{1}{1+yz}+\frac{1}{1+xz}\)

Áp dụng bất đẳng thức cộng mẫu số

\(\Rightarrow C=\frac{1}{1+xy}+\frac{1}{1+yz}+\frac{1}{1+xz}\ge\frac{9}{3+xy+yz+xz}\left(2\right)\)

Từ (1) và (2) 

\(\Rightarrow C=\frac{1}{1+xy}+\frac{1}{1+yz}+\frac{1}{1+xz}\ge\frac{9}{4}\)

Vậy \(C_{min}=\frac{9}{4}\)

Dấu " =" xảy ra khi \(x=y=z=\sqrt{\frac{1}{3}}\)

Chúc bạn học tốt !!!

24 tháng 10 2019

Nhìn qua thấy bậc của bđt là không đồng bậc nên hơi căng đấy...

Chú ý: \(2019=\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=\frac{x+y+z}{xyz}\Rightarrow xyz=\frac{x+y+z}{2019}\)

\(LHS=\Sigma_{cyc}\frac{\sqrt{2019x^2+1}+1}{x}=\Sigma_{cyc}\frac{\sqrt{\frac{x}{y}+\frac{x^2}{yz}+\frac{x}{z}+1}+1}{x}\)( thay \(2019=\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\))

\(=\Sigma_{cyc}\frac{\sqrt{\left(\frac{x}{y}+1\right)\left(\frac{x}{z}+1\right)}+1}{x}=\Sigma_{cyc}\left[\sqrt{\frac{\left(\frac{x}{y}+1\right)}{x}.\frac{\left(\frac{x}{z}+1\right)}{x}}+\frac{1}{x}\right]\)

\(=\Sigma_{cyc}\sqrt{\left(\frac{1}{y}+\frac{1}{x}\right)\left(\frac{1}{z}+\frac{1}{x}\right)}+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\le\frac{1}{2}\left[4\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\right]+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)

\(=3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{3\left(xy+yz+zx\right)}{xyz}=\frac{3\left(xy+yz+zx\right)}{\frac{\left(x+y+z\right)}{2019}}=\frac{6057\left(xy+yz+zx\right)}{x+y+z}\)

\(\le\frac{6057.\frac{\left(x+y+z\right)^2}{3}}{x+y+z}=2019\left(x+y+z\right)\)(đpcm)

Đẳng thức xảy ra khi \(x=y=z=\sqrt{\frac{3}{2019}}\)

P/s: Check hộ t phát:3

24 tháng 10 2019

Đặt \(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\)thì bài toán thành

Cho: \(ab+bc+ca=2019\)

Chứng minh:

\(\sqrt{2019+a^2}+\sqrt{2019+b^2}+\sqrt{2019+c^2}+\left(a+b+c\right)\le2019\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Ta có:

\(VT=\sqrt{ab+bc+ca+a^2}+\sqrt{ab+bc+ca+b^2}+\sqrt{ab+bc+ca+c^2}+\left(a+b+c\right)\)

\(VT=\sqrt{\left(a+b\right)\left(a+c\right)}+\sqrt{\left(b+a\right)\left(b+c\right)}+\sqrt{\left(c+a\right)\left(c+b\right)}+\left(a+b+c\right)\)

\(\le3\left(a+b+c\right)\)

\(VP=\left(ab+bc+ca\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(=2\left(a+b+c\right)+\left(\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\right)\)

\(\ge3\left(a+b+c\right)\)

Tới đây bí :(

22 tháng 3 2016

a=-7 b=6

27 tháng 3 2016

b2)<=>A=(x2-x)(x2-x-2)=24.

Đặt x2-x-1=t =>A=(t+1)(t-1)=24 <=>t2-1=24 <=>t2-25=0 <=>t=5 hoặc t=-5 

khi t=5 => x=3 hoặc x=-2

khi t=-5 (loại)

Vậy x=3 hoặc x=-2 

19 tháng 8 2017

\(\frac{x^2}{y}+x=2\\\)\(\frac{y^2}{x}+y=\frac{1}{2}\)

Xét 2 biểu thức trên ta có 

\(\left(\frac{x^2}{y}+x\right).\left(\frac{y^2}{x}+y\right)=\frac{1}{2}.2\)

\(\frac{x^2}{y}.\frac{y^2}{x}+\frac{x^2}{y}.y+x.\frac{y^2}{x}+x.y=1\)

\(xy+x^2+y^2+xy=1\\\)

\(x^2+2xy+y^2=1\\\)

\(\left(x+y\right)^2=1\)

\(\hept{\begin{cases}x+y=1\\x+y=-1\end{cases}}\)

\(\hept{\begin{cases}x=-y\\x=-1-y\end{cases}}\)

21 tháng 7 2020

By Titu's Lemma we easy have:

\(D=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)

\(\ge\frac{\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)

\(\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}\)

\(=\frac{17}{4}\)

21 tháng 7 2020

Mk xin b2 nha!

\(P=\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}+4xy\)

\(\ge\frac{\left(1+1\right)^2}{x^2+y^2+2xy}+\left(4xy+\frac{1}{4xy}\right)+\frac{1}{4xy}\)

\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{1}{\left(x+y\right)^2}\)

\(\ge\frac{4}{1^2}+2+\frac{1}{1^2}=4+2+1=7\)

Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)

25 tháng 8 2017

Từ \(3x^2y=y^2+2\left(4\right)\)\(\Rightarrow y^2=3x^2y-2\left(1\right)\)

     \(3xy^2=x^2+2\left(2\right)\Rightarrow x^2=3xy^2-2\left(3\right)\)

Lấy (1) thay vào (2) ta đc:

   \(3x.\left(3x^2y-2\right)=x^2+2\)

   \(\Leftrightarrow9x^3y-6x-x^2-2=0\)

Lấy (3) thay vào (4) ta đc:

    \(3y\left(3xy^2-2\right)=y^2+2\)

     \(\Leftrightarrow9xy^3-6y-y^2-2=0\)

              Đến đây sao khó hiểu thật

         

25 tháng 8 2017

cái này hơi bị rối nảo ak nha :)

Giờ bạn cần bài này nữa không 

1.   Đặt A = x2+y2+z2

             B = xy+yz+xz

             C = 1/x + 1/y + 1/z

Lại có (x+y+z)2=9

             A + 2B = 9

  Dễ chứng minh A>=B 

      Ta thấy 3A>=A+2B=9 nên A>=3 (khi và chỉ khi x=y=z=1)

Vì x+y+z=3 => (x+y+z) /3 =1 

    C = (x+y+z) /3x  +  (x+y+x) /3y + (x+y+z)/3z

C = 1/3[3+(x/y+y/x) +(y/z+z/y) +(x/z+z/x) 

Áp dụng bất đẳng thức (a/b+b/a) >=2

=> C >=3 ( khi và chỉ khi x=y=z=1)

P =2A+C >= 2.3+3=9 ( khi và chỉ khi x=y=x=1

Vậy ...........

Câu 2 chưa ra thông cảm