K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 9 2017

Tương tự câu 3

Chứng minh được  A O B ^ = 120 0

17 tháng 4 2019

a,  l = 2 πR 3

b, S =  3 R 2 - πR 2 3 =  3 - π 3 R 2

12 tháng 12 2023

a: Xét ΔAOM vuông tại A có \(AM^2+AO^2=OM^2\)

=>\(AM^2=5^2-3^2=16\)

=>\(AM=\sqrt{16}=4\left(cm\right)\)

Xét ΔAOM vuông tại A có \(tanAMO=\dfrac{AO}{AM}\)

=>\(tanAMO=\dfrac{3}{4}\)

b: Xét (O) có

MA,MB là các tiếp tuyến

Do đó: MA=MB

=>M nằm trên đường trung trực của AB(1)

ta có: OA=OB

=>O nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra MO là trung trực của AB

=>MO\(\perp\)AB tại I và I là trung điểm của AB

c: Xét (O) có

ΔBDC nội tiếp

BC là đườngkính

Do đó: ΔBDC vuông tại D

=>BD\(\perp\)DC tại D

=>BD\(\perp\)CM tại D

Xét ΔCBM vuông tại B có BD là đường cao

nên \(MD\cdot MC=MB^2\left(3\right)\)

Xét ΔMBO vuông tại B có BI là đường cao

nên \(MI\cdot MO=MB^2\left(4\right)\)

Từ (3) và (4) suy ra \(MD\cdot MC=MI\cdot MO\)

=>\(\dfrac{MD}{MI}=\dfrac{MO}{MC}\)

Xét ΔMDO và ΔMIC có

\(\dfrac{MD}{MI}=\dfrac{MO}{MC}\)

\(\widehat{DMO}\) chung

Do đó: ΔMDO đồng dạng với ΔMIC

6 tháng 6 2021

a. OM là đường trung trực của AB

⇒AM⊥AB tại H

xét ΔIAC và ΔIBA có

∠I chung

∠A=∠B=90

⇒ΔIAC ∼ ΔIBA (g.g)

⇒IA2=IB.IC

6 tháng 6 2021

a) Vì MA,MB là tiếp tuyến \(\Rightarrow MA=MB\) và MO là phân giác \(\angle AMB\)

\(\Rightarrow OM\bot AB\)

Xét \(\Delta ICA\) và \(\Delta IAB:\) Ta có: \(\left\{{}\begin{matrix}\angle IAC=\angle IBA\\\angle BIAchung\end{matrix}\right.\)

\(\Rightarrow\Delta ICA\sim\Delta IAB\left(g-g\right)\Rightarrow\dfrac{IC}{IA}=\dfrac{IA}{IB}\Rightarrow IA^2=IB.IC\)

b) Ta có: \(IM^2=IA^2=IB.IC\Rightarrow\dfrac{IM}{IB}=\dfrac{IC}{IM}\)

Xét \(\Delta ICM\) và \(\Delta IMB:\) Ta có: \(\left\{{}\begin{matrix}\dfrac{IM}{IB}=\dfrac{IC}{IM}\\\angle BIMchung\end{matrix}\right.\)

\(\Rightarrow\Delta ICM\sim\Delta IMB\left(c-g-c\right)\Rightarrow\angle IMC=\angle IMB=\angle BDC\)

\(\Rightarrow AM\parallel BD\)

c) Xét \(\Delta ABM\),có I là trung điểm MA,H là trung điểm AB

\(\Rightarrow IH\) là đường trung bình \(\Delta ABM\)\(\Rightarrow IH\parallel AB\)

\(\Rightarrow\angle CIH=\angle IBM=\angle CAH\Rightarrow CHAI\) nội tiếp

\(\Rightarrow\angle ACI=\angle AHI=\angle ABM=\angle BAM=\angle ABD\) \((AM\parallel BD)\) 

\(=\angle ACD\)

\(\Rightarrow CA\) là phân giác undefined