K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Triệu hồi các cao nhân giải giúp mình câu d nhé! Mình không cần mấy câu kia nhưng mình vẫn ghi ra để làm nền làm câu d. Gíup mình nha mình phải ôn thi học kỳ, cám ơn mọi người trước nhé. Chúc buổi tối vui vẻ! :)) ^^. Nếu không các bạn cũng có thể ib mình qua facebook: https://www.facebook.com/hoang.anh.04032003 mình sẵn sàng rep nhé Cho tam giác ABC vuông tại A (AB<AC) có đường cao AH. Gọi I là trung điểm...
Đọc tiếp

Triệu hồi các cao nhân giải giúp mình câu d nhé! Mình không cần mấy câu kia nhưng mình vẫn ghi ra để làm nền làm câu d. Gíup mình nha mình phải ôn thi học kỳ, cám ơn mọi người trước nhé. Chúc buổi tối vui vẻ! :)) ^^. Nếu không các bạn cũng có thể ib mình qua facebook: https://www.facebook.com/hoang.anh.04032003 mình sẵn sàng rep nhé 

Cho tam giác ABC vuông tại A (AB<AC) có đường cao AH. Gọi I là trung điểm của HC, K là điểm đối xứng với A qua I

a) Chứng minh: AHKC là hình bình hành

b)Từ H kẻ HM vuông góc với AB (M thuộc AB), kẻ HN vuông góc với AC (N thuộc AC). Gọi O là giao điểm của AH và MN. Chứng minh tứ giác AHMN là hình chữ nhật và góc OAN = góc ONA

c) chứng minh tứ giác NCKM là hình thang cân

d) Gọi D là giao điểm của CO và AK. Chứng minh AK= 3.AD

 

0
31 tháng 7 2016

Cho tứ giác ABCD có 2 đường chéo AC và BD bằng nhau và cắt nhau tại O sao cho OC > OD. Gọi F, E, P, Q theo thứ tự là trung điểm AB, BC, CD, AD. Gọi Ot là phân giác góc DOC. Chứng minh rằng: Ot vuông góc QE.

Các bạn giúp mình với.. Mình sắp nộp bài rồi. Giải cụ thể nhé. Camon.

Vì OE = AE và OF = DF => EF là đường TB của tam giác OAD => EF = AD/2 (1) 

Vì ABCD là hình thang => góc OAB = OCD = 60* và ODC = OBA = 60* 
==> tam giác OCD đều 

∆ OCD đều có CF là đường trung tuyến nên đồng thời là đường cao => CF _l_ BD 
=> tam giác BCF vuông tại F có trung tuyến FG => FG = BC / 2 (2) 

Tương tự ==> EG = BC / 2 (3) 

Vì 2 tam giác OAB và OCD đều => OA = OB và OC = OD 
=> OA + OC = OB + OD <=> AC = BD => ABCD là hình thang cân => AD = BC (4) 

Từ (1)(2)(3)(4) => EF = EG = FG => tam giác EFG đều

31 tháng 7 2016

Vì OE = AE và OF = DF => EF là đường TB của tam giác OAD => EF = AD/2 (1) 

Vì ABCD là hình thang => góc OAB = OCD = 60* và ODC = OBA = 60* 
==> tam giác OCD đều 

∆ OCD đều có CF là đường trung tuyến nên đồng thời là đường cao => CF _l_ BD 
=> tam giác BCF vuông tại F có trung tuyến FG => FG = BC / 2 (2) 

Tương tự ==> EG = BC / 2 (3) 

Vì 2 tam giác OAB và OCD đều => OA = OB và OC = OD 
=> OA + OC = OB + OD <=> AC = BD => ABCD là hình thang cân => AD = BC (4) 

Từ (1)(2)(3)(4) => EF = EG = FG => tam giác EFG đều

13 tháng 8 2016

a)Ta có gAMD = gMDC (so le trong), mà gMDC = gADM (gt) => gADM = g AMD
=> tg ADM cân tai A => AD = AM = AB/2 hay AB = 2AD
b) Từ A hạ AI v^g góc với DM => I là trung điểm của DM và AI là phân giác của góc A (tc tg cân)
=> DM = 2 DI (1) và g DAI = 120/2 = 60 độ
Mặt khác gD + gA = 180 độ ( hai góc trong cùng phía, AB // DC) mà gA = 120 độ => gD = 60 độ
tg v^g DAI và tg v^g ADH có gDAI = gADH = 60 độ, AD là cạnh huyền chung
=> tg DAI = tg ADH ( cạnh huyền, góc nhọn)
=> AH = DI (2)
Từ (1) và (2) => DI = 2 AH
c) Gọi N là trung điểm của DC do Dc= AB nên AD = DC/ 2= DN => tg ADN cân tại D mà gD = 60 độ => tg ADN đều => AN = AD = DC/ 2
tg ADC có đường trung tuyến AN = DC/2 => tg ADC v^g tại A hay DA _|_ AC

16 tháng 10 2017

có tìm thấy câu hỏi này tương tự nhưng nhìn ngay dòng đầu là bn đã sai r :v