\(\dfrac{a}{b^2}+\dfrac{b}{c^2}+\dfrac{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
6 tháng 5 2018

Cách khác:

Áp dụng BĐT AM-GM:

\(\frac{a}{b^2}+\frac{1}{a}\geq 2\sqrt{\frac{1}{b^2}}=\frac{2}{b}\)

\(\frac{b}{c^2}+\frac{1}{b}\geq 2\sqrt{\frac{1}{c^2}}=\frac{2}{c}\)

\(\frac{c}{a^2}+\frac{1}{c}\geq 2\sqrt{\frac{1}{a^2}}=\frac{2}{a}\)

Cộng theo vế và rút gọn:

\(\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{a^2}\geq \frac{1}{a}+\frac{1}{b}+\frac{1}{c}\) (đpcm)

AH
Akai Haruma
Giáo viên
6 tháng 5 2018

Đúng rồi bạn nhé.

6 tháng 10 2017

\(A=x^3+y^3+z^3-3xyz\)

\(=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)

\(=\left(x+y+z\right)\left[\left(x^2+2xy+y^2\right)-\left(xz+yz\right)+z^2\right]-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)\)

\(=0\)

<><><>

\(A=\left(\dfrac{x}{y}+1\right)\left(\dfrac{y}{z}+1\right)\left(\dfrac{z}{x}+1\right)\)

\(=\dfrac{x+y}{y}\times\dfrac{y+z}{z}\times\dfrac{z+x}{x}\)

\(=\dfrac{-z}{y}\times\dfrac{-x}{z}\times\dfrac{-y}{x}\)

\(=-1\)

<><><>

\(A=\dfrac{1}{y^2+z^2-x^2}+\dfrac{1}{x^2+z^2-y^2}+\dfrac{1}{x^2+y^2-z^2}\)

\(=\dfrac{1}{\left(y+z\right)^2-2yz-x^2}+\dfrac{1}{\left(x+z\right)^2-2xz-y^2}+\dfrac{1}{\left(x+y\right)^2-2xy-z^2}\)

\(=\dfrac{1}{\left(-x\right)^2-2yz-x^2}+\dfrac{1}{\left(-y\right)^2-2xz-y^2}+\dfrac{1}{\left(-z\right)^2-2xy-z^2}\)

\(=-\dfrac{1}{2}\left(\dfrac{1}{yz}+\dfrac{1}{xz}+\dfrac{1}{xz}\right)\)

\(=-\dfrac{1}{2}\times\dfrac{x+y+z}{xyz}\)

\(=0\)

28 tháng 6 2017

a, \(9x^2+y^2+2z^2-18x-6y+4z+20=0\)

\(\Leftrightarrow\left(9x^2-18x+9\right)+\left(y^2-6y+9\right)+\left(2z^2+4z+2\right)=0\)

\(\Leftrightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\)

\(\left\{{}\begin{matrix}9\left(x-1\right)^2\ge0\\\left(y-3\right)^2\ge0\\2\left(z+1\right)^2\ge0\end{matrix}\right.\Leftrightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\)

\(9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}9\left(x-1\right)^2=0\\\left(y-3\right)^2=0\\2\left(z+1\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\\z=-1\end{matrix}\right.\)

Vậy...

28 tháng 6 2017

b, Câu hỏi của Cry... - Toán lớp 8 | Học trực tuyến

Bài 1: 

a: \(A=\dfrac{x^4+x^3+x+1}{x^4-x^3+2x^2-x+1}=\dfrac{x^3\left(x+1\right)+\left(x+1\right)}{x^4-x^3+x^2+x^2-x+1}\)

\(=\dfrac{\left(x+1\right)\left(x^3+1\right)}{\left(x^2-x+1\right)\left(x^2+1\right)}=\dfrac{\left(x+1\right)^2}{x^2+1}\)

Để A=0 thì x+1=0

hay x=-1

b: \(B=\dfrac{x^4-5x^2+4}{x^4-10x^2+9}=\dfrac{\left(x^2-1\right)\left(x^2-4\right)}{\left(x^2-1\right)\left(x^2-9\right)}=\dfrac{x^2-4}{x^2-9}\)

Để B=0 thi (x-2)(x+2)=0

=>x=2 hoặc x=-2

7 tháng 5 2018

nhân cả 2 vế với 2 rồi bunhia

6 tháng 4 2018

câu c là \(\dfrac{1}{2}\)(x+y+z) nhé, mih chép nhầm

AH
Akai Haruma
Giáo viên
29 tháng 11 2018

Bài 1:

Đặt \(\left(\frac{x}{y}; \frac{y}{z}; \frac{z}{x}\right)=(a,b,c)\Rightarrow abc=1\)

Khi đó:

\(A^2+B^2+C^2-ABC=(b+\frac{1}{b})^2+(c+\frac{1}{c})^2+(a+\frac{1}{a})^2-(a+\frac{1}{a})(b+\frac{1}{b})(c+\frac{1}{c})\)

\(=b^2+\frac{1}{b^2}+2+c^2+\frac{1}{c^2}+2+a^2+\frac{1}{a^2}+2-(ab+\frac{a}{b}+\frac{b}{a}+\frac{1}{ab})(c+\frac{1}{c})\)

\(a^2+b^2+c^2+(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2})+6-[abc+\left(\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\right)+\left(\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\right)+\frac{1}{abc}]\)

\(=a^2+b^2+c^2+\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+6-[1+\left(\frac{abc}{c^2}+\frac{abc}{a^2}+\frac{abc}{b^2}\right)+\left(\frac{a^2}{abc}+\frac{b^2}{abc}+\frac{c^2}{abc}\right)+1]\)

\(=a^2+b^2+c^2+\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+6-[1+(\frac{1}{c^2}+\frac{1}{b^2}+\frac{1}{a^2})+(a^2+b^2+c^2)+1]\)

\(=4\)

AH
Akai Haruma
Giáo viên
29 tháng 11 2018

Câu 2:

Ta có:

\(xy+yz+xz+2xyz=\frac{ab}{(b+c)(c+a)}+\frac{bc}{(c+a)(a+b)}+\frac{ac}{(b+c)(a+b)}+\frac{2abc}{(a+b)(b+c)(c+a)}\)

\(=\frac{ab(a+b)}{(a+b)(b+c)(c+a)}+\frac{bc(b+c)}{(a+b)(b+c)(c+a)}+\frac{ac(a+c)}{(a+b)(b+c)(c+a)}+\frac{2abc}{(a+b)(b+c)(c+a)}\)

\(=\frac{ab(a+b)+bc(b+c)+ca(c+a)+2abc}{(a+b)(b+c)(c+a)}\)

\(=\frac{ab(a+b+c)+bc(b+c+a)+ca(c+a)}{(a+b)(b+c)(c+a)}\)

\(=\frac{(a+b+c)(ab+bc)+ac(a+c)}{(a+b)(b+c)(c+a)}=\frac{(c+a)b(a+b+c)+ac(a+c)}{(a+b)(b+c)(c+a)}\)

\(=\frac{(a+c)[b(a+b+c)+ac]}{(a+b)(b+c)(c+a)}=\frac{(a+c)[b(a+b)+c(a+b)]}{(a+b)(b+c)(c+a)}\)

\(=\frac{(a+c)(b+c)(a+b)}{(a+b)(b+c)(c+a)}=1\)

10 tháng 6 2017

a )

Sử dụng Cô-si , ta có :

\(x+y\ge2\sqrt{xy}\) (1)

\(\dfrac{1}{x}+\dfrac{1}{y}\ge2\sqrt{\dfrac{1}{x}.\dfrac{1}{y}}\) (2)

Nhân cả vế (1) vế (2) lại ta có :

\(\left(x+y\right)\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\ge2\sqrt{xy}.2\sqrt{\dfrac{1}{x}.\dfrac{1}{y}}=4\)

\(\LeftrightarrowĐPCM.\)

10 tháng 6 2017

Câu b trên mạng đầy :v