Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
O B C K I A H
a) Xét tam giác vuông ABO có đường cao BK, áp dụng hệ thức lượng trong tam giác ta có:
\(OB^2=OK.OA\Rightarrow5^2=OK.10\Rightarrow OK=2,5\left(cm\right)\)
b) Xét tam giác cân OBC có OK là đường cao nên đồng thời là phân giác.
Vậy thì \(\widehat{BOA}=\widehat{COA}\)
Suy ra \(\Delta ABO=\Delta ACO\left(c-g-c\right)\Rightarrow\widehat{ACO}=\widehat{ABO}=90^o\)
Vậy nên AC là tiếp tuyến của đường tròn (O).
c) Ta thấy ngay \(\Delta KOI\sim\Delta HOA\left(g-g\right)\Rightarrow\frac{OI}{OA}=\frac{OK}{OH}\Rightarrow OI=\frac{OK.OA}{OH}\)
Xét tam giac vuông ABO có BK là đường cao nên áp dụng hệ thức lượng trong tam giác ta có:
\(OK.OA=OB^2=R^2\) không đổi. Lại có OH cũng không đổi (bằng khoảng cách từ O tới đường thẳng xy)
Vậy nên \(OI=\frac{R^2}{OH}\) không đổi.
Vậy khi A di chuyển trên đường thẳng xy thì độ dài đoạn thẳng OI không đổi.
![](https://rs.olm.vn/images/avt/0.png?1311)
a, Sử dụng tính chất phân giác trong và phân giác ngoài tại 1 điểm ta có:
I B K ^ = I C K ^ = 90 0
=> B, C, I, K ∈ đường tròn tâm O đường kính IK
b, Chứng minh
I
C
A
^
=
O
C
K
^
từ đó chứng minh được
O
C
A
^
=
90
0
Vậy AC là tiếp tuyến của (O)
c, Áp dụng Pytago vào tam giác vuông HAC => AH=16cm. Sử dụng hệ thức lượng trong tam giác vuông COA => OH=9cm,OC=15cm
a) CMR: 4 điểm B, I, C, K cùng thuộc (O).
Vì I là tâm đường tròn ngoại tiếp tam giác ABC nên IC là phân giác trong của góc C.
Vì K là tâm đường tròn ngoại tiếp tam giác ABC của góc A nên CK là phân giác ngoài của góc C.
Theo tính chất phân giác trong và phân giác ngoài ta có IC vuông CK nên ∠ICK=90
Chứng minh hoàn toàn tương tự ta có: ∠IBK=90
Xét tứ giác BICK ta có: ∠IBK+∠ICK=90+90=180
⇒BICK là tứ giác nội tiếp (tứ giác có tổng hai góc đối diện bằng 180)
Do O là trung điểm của IK nên theo tính chất trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền thì OC = OI = OK.
Vậy O là tâm đường tròn ngoại tiếp tứ giác IBKC.
b) CMR: AC là tiếp tuyến của (O).
Ta có : Tam giác IOC cân tại O nên : ∠OIC=∠OCI.
Mặt khác, theo tính chất góc ngoài của tam giác ta có :
∠OIC=∠IAC+∠ACI=1/2∠BAC+1/2∠ACB=1/2∠BAC+1/2∠ABC
⇒∠ICO+∠ICA=1/2∠BAC+1/2∠ABC+1/2∠ACB=12.180=90 ⇒OC⊥CA.
Do đó AC là tiếp tuyến của (O) tại C (đpcm).
c) Tính tổng diện tích các hình viên phân giới hạn bởi các cung nhỏ CI, IB, BK, KC và các dây cung tương ứng của (O) biết AB = 20, BC = 24.
Gọi diện tích hình cần tính là S, diện tích hình tròn (O) là S’, gọi giao điểm BC và IK là M.
Ta có ngay :
S = S′−S (ICKB) =π.IO2−S (IBK)−S (IKC)
= π.IK2/4 −(BM.IK)/2−(CM.IK)/2
=πIK2/4 − (BC.IK)/2
Ta có :
S (ABC) = 1/2 (AM.BC) = (AB+BC+CA) /2 .IM
⇔√(AB2−BM2 ) .24 = (AB+BC+CA).IM
⇔√[202−(24/2)2 ]. 24= (20.2+24).IM⇔IM=6.
Áp dụng hệ thức lượng trong tam giác IBM vuông tại B có đường cao BM ta có :
BM2=IM.MK ⇔MK=BM2/IM=122/6=24
⇒IM=IM+MK=6+24=30.
⇒S= 1/4(π.IK2)−1/2 BC.IK =1/4 π.302 −1/2(24.30 ) =225π−360 ≈346,86 (dvdt)
![](https://rs.olm.vn/images/avt/0.png?1311)
a. Vì \(CE\perp MA\)tại E (gt) => \(\widehat{AEC}=90^o\)
\(CD\perp AB\)tại D=> \(\widehat{ADC}=90^o\)
Xét tứ giác AECD có: \(\widehat{AEC}+\widehat{ADC}=90^o+90^o=180^o\)=> AECD là tứ giác nội tiếp đt \((G,R=\frac{AC}{2})\)trong đó G là trung điểm của AC (dhnb)
Cmtt ta có: BFCD là tứ giác nội tiếp đt \((H,R=\frac{BC}{2})\)trong đó H là trung điểm của BC
b.
Vì AECD là tứ giác nội tiếp (cmt) => \(\widehat{EAC}=\widehat{EDC}\)(2 góc nội tiếp cùng chắn \(\widebat{EC}\)) (1)
Do MA là tiếp tuyến của đt(O) (gt)=> \(\widehat{EAC}=\frac{1}{2}sđ\widebat{AC}\)(t/c góc tạo bởi tiếp tuyến và dây cung)
Xét đt (O) có: \(\widehat{ABC}=\widehat{DBC}=\frac{1}{2}sđ\widebat{AC}\)(t/c góc nội tiếp) => \(\widehat{EAC}=\widehat{DBC}\)(2)
vì BFCD là tứ giác nội tiếp => \(\widehat{DBC}=\widehat{DFC}\)(2 góc nội tiếp cùng chắn \(\widebat{DC}\)) (3)
Từ (1),(2) và (3) => \(\widehat{EDC}=\widehat{DFC}\)
do AECD là tứ giác nội tiếp (cmt) => \(\widehat{CED}=\widehat{CAD}\)(2 góc nội tiếp cùng chắn \(\widebat{CD}\)) (4)
Vì MB là tiếp tuyến của đt (O) tại B (gt) => \(\widehat{CBF}=\frac{1}{2}sđ\widebat{BC}\)(T/c góc tạo bởi tiếp tuyến và dây cung)
Xét đt (O) có: \(\widehat{BAC}=\widehat{DAC}=\frac{1}{2}sđ\widebat{BC}\)(t/c góc nội tiếp) => \(\widehat{CBF}=\widehat{DAC}\)(5)
lại có: BFCD là tứ giác nội tiếp (cmt) => \(\widehat{CBF}=\widehat{CDF}\)(2 góc nội tiếp cùng chắn \(\widebat{CF}\)) (6)
Từ (4), (5) và (6) => \(\widehat{CED}=\widehat{CDF}\)
Xét \(\Delta ECD\)và \(\Delta DCF\)có:
\(\widehat{CED}=\widehat{CDF}\)(Cmt)
\(\widehat{EDC}=\widehat{DFC}\)(Cmt)
=> \(\Delta ECD~\Delta DCF\)(g.g) => \(\frac{EC}{DC}=\frac{CD}{CF}\Rightarrow CD^2=CE\times CF\)(Đpcm)
c. Vì I là giao điểm của AC và DE (gt) => \(I\in AC\)
K là giao điểm của BC và DF (gt) => \(K\in BC\)
=> \(\widehat{ICK}=\widehat{ACB}\)
Vì \(\widehat{EDC}=\widehat{ABC}\left(cmt\right)\Rightarrow\widehat{IDC}=\widehat{ABC}\left(do\overline{E,I,D}\Rightarrow\widehat{EDC}=\widehat{IDC}\right)\)
\(\widehat{CDF}=\widehat{BAC}\left(cmt\right)\Rightarrow\widehat{CDK}=\widehat{BAC}\left(do\overline{F,K,D}\Rightarrow\widehat{CDF}=\widehat{CDK}\right)\)
Xét tứ giác ICKD có : \(\widehat{ICK}+\widehat{IDK}=\widehat{ICK}+\widehat{IDC}+\widehat{CDK}=\widehat{ACB}+\widehat{ABC}+\widehat{BAC}=180^o\)
(Áp dụng định lý tổng 3 góc trong \(\Delta ABC\)ta có: \(\widehat{ACB}+\widehat{ABC}+\widehat{BAC}=180^o\))
=> Tứ giác ICKD là tứ giác nội tiếp (dhnb) => 4 điểm I,C,K,D cùng thuộc 1 đường tròn (đpcm)
d. Vì ICKD là tứ giác nội tiếp (cmt) => \(\widehat{CIK}=\widehat{CDK}\)(2 góc nội tiếp cùng chắn \(\widebat{CK}\))
Lại có: \(\widehat{CDK}=\widehat{BAC}\)(Cmt) => \(\widehat{CIK}=\widehat{BAC}\)mà 2 góc này ở vị tri đồng vị => IK // AB (Dhnb)
Do \(CD\perp AB\left(gt\right)\)=> \(IK\perp CD\)(Quan hệ tính vuông góc và tính song song của 3 đt)