Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét (O) có
MA là tiếp tuyến
MB là tiếp tuyến
DO đó; OM là tia phân giác của góc AOB
Xét ΔOAM vuông tại A có
\(\tan\widehat{AOM}=\dfrac{AM}{AO}=\sqrt{3}\)
nên \(\widehat{AOM}=60^0\)
=>\(\widehat{AOB}=120^0\)
Ta thừa nhận định lý f(x) chia hết cho x-a thì f(a) =0 ( mình đang vội khỏi chứng minh nhé, nếu thắc mắc phiền bạn xem SGK 9 nha)
Thay 1 vào x, ta có
f(x) =14+12+a=0
2+a=0 suy ra a=-2
\(cos\alpha=\frac{1}{2}\Leftrightarrow\alpha=\frac{-\pi}{3}\)(vì \(\frac{-\pi}{2}< \alpha< 0\))
\(cot\left(\frac{\pi}{3}-\alpha\right)=cot\left(\frac{2\pi}{3}\right)=\frac{-\sqrt{3}}{3}\)
4b. ta có : \(\frac{\left(x_1-1\right)\left(x_2-1\right)-1}{x_1+x_2-2}-\frac{x_1+x_2}{4}\)\(=\frac{x_1x_2-x_1-x_2+1-1}{x_1+x_2-2}-\frac{x_1+x_2}{4}=\frac{x_1x_2-\left(x_1+x_2\right)}{\left(x_1+x_2\right)-2}-\frac{x_1+x_2}{4}\)
Ta có : \(x_1x_2=\frac{c}{a}=m^2+2\) ; \(x_1+x_2=\frac{-b}{a}=2\left(m+1\right)\)
Nên: \(\frac{m^2+2-2\left(m+1\right)}{2\left(m+1\right)-2}-\frac{2\left(m+1\right)}{4}=\frac{m^2+2-2m-2}{2m}-\frac{m+1}{2}=\frac{m^2-2m-m^2-m}{2m}=\frac{-3m}{2m}=\frac{-3}{2}\) \(< 0\) với mọi m .(đpcm)
TỪ PT (1) TA CÓ
2X +20Y=60
=>X=(60-20Y)/2=30-10Y
THAY X=30-10Y VÀO PT (2) TA ĐƯỢC
((30-10Y)+3Y)2+((30-10Y)+11Y)2=1170
phần sau bạn tự giải nhé
k cần bài tuong tu nao hit, chỉ 5p giải lao giua 2 tiêt em lam giup a
thay x = -9-6y vào ta có:
(-9-6y +2y)2 + ( -9-6y +4y)2 =26
triển khai ta co pt: 5y2 + 27y + 34 = 0
dùng máy tính giải có: y1 = -2 ; y2 = -3,4
=> x1 = 3; x2= ...
( đã có đường đi đúng nhất định kq đ, thui em vào học r)
Lời giải:
GTLN:
Áp dụng BĐT Cauchy-Schwarz:
\(B^2=(6\sqrt{x-1}+8\sqrt{3-x})^2\leq (6^2+8^2)(x-1+3-x)=200\)
\(\Rightarrow B_{\max}= 10\sqrt{2}\Leftrightarrow \frac{3}{\sqrt{x-1}}=\frac{4}{\sqrt{3-x}}\Leftrightarrow x=\frac{43}{25}\)
GTNN:
Ta biết một bổ đề sau: Với \(a,b\geq 0\Rightarrow \sqrt{a}+\sqrt{b}\geq \sqrt{a+b}\)
Cách CM rất đơn giản vì nó tương đương với \(\sqrt{ab}\geq 0\) (luôn đúng)
Áp dụng vào bài toán:
\(\Rightarrow B\geq \sqrt{36x-36+192-64x}=\sqrt{156-28x}\geq 6\sqrt{2}\) (do \(x\leq 3\))
Vậy \(B_{\min}=6\sqrt{2}\Leftrightarrow x=3\)