Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề bài, ta có:
\(\dfrac{3x}{4}=\dfrac{y}{2}=\dfrac{3z}{5}\) và x - z = 15
\(\Rightarrow\dfrac{3x}{4}=\dfrac{y}{2}\Rightarrow6x=4y\Rightarrow\dfrac{x}{4}=\dfrac{y}{6}\) (1)
\(\Rightarrow\dfrac{y}{2}=\dfrac{3z}{5}\Rightarrow5y=6z\Rightarrow\dfrac{y}{6}=\dfrac{z}{5}\) (2)
(1)(2) \(\Rightarrow\dfrac{x}{4}=\dfrac{y}{6}=\dfrac{z}{5}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{4}=\dfrac{y}{6}=\dfrac{z}{5}=\dfrac{x-z}{4-5}=-\dfrac{15}{1}=-15\)
\(\Rightarrow x=-60;y=-90;z=-75\)
\(\Rightarrow x+y+z=-225\)
\(\dfrac{-4}{x}=\dfrac{-x}{\dfrac{1}{9}}\)
\(\Rightarrow-\left(x^2\right)=\dfrac{-4}{9}\)
\(\Rightarrow x^2=\dfrac{4}{9}\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-\dfrac{2}{3}\end{matrix}\right.\)
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=k\Rightarrow a=2k;b=3k;c=4k\\ \dfrac{2k}{2}=\dfrac{3k}{3}=\dfrac{4k}{4}\\ \Rightarrow\dfrac{\left(2k\right)^2}{2^2}=\dfrac{\left(3k\right)^2}{3^2}=\dfrac{2\left(4k\right)^2}{2\cdot4^2}\\ \Leftrightarrow\dfrac{4k^2}{4}=\dfrac{9k^2}{9}=\dfrac{32k^2}{32}=\dfrac{4k^2-9k^2+32k^2}{4-9+32}=\dfrac{108}{27}=4\\ \dfrac{4k^2-9k^2+32k^2}{4-9+32}=4\\ \Rightarrow\dfrac{\left(4-9+32\right)k^2}{4-9+32}=4\Rightarrow k^2=4\Rightarrow\left[{}\begin{matrix}k=2\\k=-2\end{matrix}\right.\\ k=2\Rightarrow\left\{{}\begin{matrix}a=2k=2\cdot2=4\\b=3k=3\cdot2=6\\c=4k=4\cdot2=8\end{matrix}\right.\\ k=-2\Rightarrow\left\{{}\begin{matrix}a=2k=2\cdot\left(-2\right)=-4\\b=3k=3\cdot\left(-2\right)=-6\\c=4k=4\cdot\left(-2\right)=-8\end{matrix}\right.\)
Vậy ...
Ta có : \(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\)
Áp dụng t/c dãy tỉ số bằng nhau có :
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=\dfrac{a^2}{4}=\dfrac{b^2}{9}=\dfrac{c^2}{16}=\dfrac{a^2-b^2+2c^2}{4-9+32}=\dfrac{108}{27}=4\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{a}{2}=4\\\dfrac{b}{3}=4\\\dfrac{c}{4}=4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}a=8\\b=12\\c=16\end{matrix}\right.\)
Giải:
Áp dụng tính chất dãy tỉ số bằng nhau có:
\(\dfrac{x-1}{2005}=\dfrac{3-y}{2006}=\dfrac{x-1+3-y}{2005+2006}=\dfrac{x-y-1+3}{4011}=\dfrac{4009-1+3}{4011}=\dfrac{4011}{4011}=1.\)
Từ đó:
\(\dfrac{x-1}{2005}=1\Rightarrow x-1=2005\Rightarrow x=2006.\)
\(\dfrac{3-y}{2006}=1\Rightarrow3-y=2006\Rightarrow y=-2003.\)
Vậy \(x=2006;y=-2003.\)
\(\dfrac{x}{10}=\dfrac{y}{6}=\dfrac{z}{5}\)
\(\Rightarrow\dfrac{5x}{50}=\dfrac{y}{6}=\dfrac{2z}{10}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{5x}{50}=\dfrac{y}{6}=\dfrac{2z}{10}\)
\(=\dfrac{5x+y-2z}{50+6-10}=\dfrac{8}{46}=\dfrac{4}{43}\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{4}{43}.10=\dfrac{40}{43}\\y=\dfrac{4}{43}.6=\dfrac{24}{43}\\z=\dfrac{4}{43}.5=\dfrac{20}{43}\end{matrix}\right.\)
Ta có: \(\dfrac{x}{10}=\dfrac{y}{6}=\dfrac{z}{5}\Rightarrow\dfrac{5x}{50}=\dfrac{y}{6}=\dfrac{2z}{10}\)
Áp dụng tc dãy tỉ số bằng nhau:
\(\dfrac{5x}{50}=\dfrac{y}{6}=\dfrac{2z}{10}=\dfrac{5x+y-2z}{50+6-10}=\dfrac{4}{23}\)
Do \(\left\{{}\begin{matrix}\dfrac{5x}{50}=\dfrac{4}{23}\\\dfrac{y}{6}=\dfrac{4}{23}\\\dfrac{2z}{10}=\dfrac{4}{23}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{40}{23}\\y=\dfrac{24}{23}\\z=\dfrac{20}{23}\end{matrix}\right.\).
Vậy ...
1)Tìm x:
a)7x=9y và 10x-8y=68
Ta có:7x=9y \(\Rightarrow\dfrac{x}{9}=\dfrac{y}{7}\Rightarrow\dfrac{10x-8y}{9.10-7.8}=\dfrac{68}{34}=2\)
\(\Rightarrow\dfrac{x}{9}=2\Rightarrow x=2.9=18\)
\(\dfrac{y}{7}=2\Rightarrow y=2.7=14\)
a/ Ta có :
\(7x=9y\)
\(\Leftrightarrow\dfrac{7x}{63}=\dfrac{9y}{63}\)
\(\Leftrightarrow\dfrac{x}{9}=\dfrac{y}{7}\)
\(\Leftrightarrow\dfrac{10x}{90}=\dfrac{8y}{56}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\dfrac{10x}{90}=\dfrac{8y}{56}=\dfrac{10x-8y}{90-56}=\dfrac{68}{34}=2\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{10x}{90}=2\Leftrightarrow x=18\\\dfrac{8y}{56}=2\Leftrightarrow y=14\end{matrix}\right.\)
Vậy ................
Đặt \(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}=k\)
=> \(\left\{{}\begin{matrix}x-1=2k\\y-2=3k\\z-3=4k\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2k+1\\y=3k+2\\z=4k+3\end{matrix}\right.\)
Do: x-2y+3z = 14
<=> 2k+1 - 2(3k+2) + 3(4k+3) = 14
<=> 2k+1 - 6k-4 + 12k+9 = 14
<=> 8k + 6 = 14
<=> 8k = 8
<=> k = 1
<=> \(\left\{{}\begin{matrix}x=3\\y=5\\z=7\end{matrix}\right.\)
giúp mik với ạ