Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Nhớ không nhầm thì bạn đã đăng bài này rồi mà.
\(2\sqrt{2}m-\sqrt{2}-2m+1=3-m\)
\(\Leftrightarrow 2\sqrt{2}m-2m+m=3-1+\sqrt{2}\)
\(\Leftrightarrow m(2\sqrt{2}-1)=2+\sqrt{2}\Rightarrow m=\frac{2+\sqrt{2}}{2\sqrt{2}-1}=\frac{6+5\sqrt{2}}{7}\)
So sánh A=(2∛5)3 và B=(1/2)3.(∛311)3
Ta có : A = 40; B = 311/8 < 320/8 = 40.
Suy ra A>B.
Suy ra 2∛5 > (1/2).∛311
a/ Để hàm số là hàm bậc nhất
\(\Rightarrow1-2m>0\Rightarrow m< \frac{1}{2}\)
Do \(\sqrt{1-2m}>0\Rightarrow\) hàm số luôn đồng biến
b/ \(3+2m^2>0\) \(\forall m\) nên hàm số là hàm bậc nhất với mọi m
Hàm luôn đồng biến
c/ Để hàm là hàm bậc nhất
\(\Leftrightarrow m^2-2m+1\ne0\Rightarrow m\ne1\)
Khi đó \(m^2-2m+1=\left(m-1\right)^2>0\) nên hàm đồng biến
\(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{99}+\sqrt{100}}\\ < =>\frac{1-\sqrt{2}}{1+\sqrt{2}\left(1-\sqrt{2}\right)}+\frac{\sqrt{2}-\sqrt{3}}{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right)}+...+\frac{\sqrt{99}-\sqrt{100}}{\left(\sqrt{99}+\sqrt{100}\right)\sqrt{99}-\sqrt{100}}\\ < =>\frac{1-\sqrt{2}}{1-2}+\frac{\sqrt{2}-\sqrt{3}}{2-3}+...+\frac{\sqrt{99}-\sqrt{100}}{99-100}\)
\(=\frac{1-\sqrt{2}}{-1}+\frac{\sqrt{2}-\sqrt{3}}{-1}+...+\frac{\sqrt{99}-\sqrt{100}}{-1}\\ =\frac{1-\sqrt{2}+\sqrt{2}-\sqrt{3}+\sqrt{3}-\sqrt{4}+...+\sqrt{99}-10}{-1}\\ =\frac{1-10}{-1}\\ =\frac{-9}{-1}\\ =9\)
P/s: Chuyền hết dấu tương đương ở trên thành bằng nhé, mình bị nhầm
Lời giải:
PT(1):
\(3m^2-2m-13=0\)
\(\Leftrightarrow 3(m^2-\frac{2}{3}m+\frac{1}{3^2})-\frac{40}{3}=0\)
\(\Leftrightarrow 3(m-\frac{1}{3})^2=\frac{40}{3}\Leftrightarrow (m-\frac{1}{3})^2=\frac{40}{9}\)
\(\Rightarrow \left[\begin{matrix} m-\frac{1}{3}=\frac{\sqrt{40}}{3}\\ m-\frac{1}{3}=\frac{-\sqrt{40}}{3}\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} m=\frac{1+\sqrt{40}}{3}\\ m=\frac{1-\sqrt{40}}{3}\end{matrix}\right.\)
PT(2):
\(2m-2+1=0\)
\(\Leftrightarrow 2m-1=0\Leftrightarrow m=\frac{1}{2}\)
Lời giải:
ĐKXĐ: $m\neq \frac{1}{2}$
Từ PT $\sqrt{2}-1=\frac{3-m}{2m-1}\Rightarrow (\sqrt{2}-1)(2m-1)=3-m$
$\Leftrightarrow 2+\sqrt{2}=m(2\sqrt{2}-1)$
$\Leftrightarrow m=\frac{2+\sqrt{2}}{2\sqrt{2}-1}=\frac{6+5\sqrt{2}}{7}$ (thỏa mãn)
Vậy...