Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình đầu bài tương đương với
\(\frac{x+43}{57}+1+\frac{x+46}{54}+1=\frac{x+49}{51}+1+\frac{x+52}{48}+1\)\(\Leftrightarrow\frac{x+43+57}{57}+\frac{x+46+54}{54}=\frac{x+49+51}{51}+\frac{x+52+48}{48}\)\(\Leftrightarrow\frac{x+100}{57}+\frac{x+100}{54}=\frac{x+100}{51}+\frac{x+100}{48}\)
\(\Leftrightarrow\orbr{\begin{cases}x+100=0\\\frac{1}{57}+\frac{1}{54}=\frac{1}{51}+\frac{1}{48}\left(sai\right)\end{cases}\Leftrightarrow x+100=0\Leftrightarrow x=-100}\)
Vậy phương trình có nghiệm duy nhất là x=-100
<=> \(\frac{x+43}{57}+1+\frac{x+46}{54}+1=\frac{x+49}{51}+1+\frac{x+52}{48}+1\)
<=> \(\frac{x+100}{57}+\frac{x+100}{54}=\frac{x+100}{51}+\frac{x+100}{48}\)
<=> \(\left(x+100\right)\left(\frac{1}{57}+\frac{1}{54}-\frac{1}{51}-\frac{1}{48}\right)=0\)
vi \(\frac{1}{57}< \frac{1}{51};\frac{1}{54}< \frac{1}{48}\Rightarrow\frac{1}{57}-\frac{1}{51}+\frac{1}{54}-\frac{1}{48}< 0\)
=> x+100=0 => x= -100
vay pt co nghiem \(x=-100\)
\(\frac{43-x}{57}+\frac{46-x}{54}=\frac{49-x}{51}+\frac{52-x}{48}\)
\(\Leftrightarrow\left(\frac{43-x}{57}+1\right)+\left(\frac{46-x}{54}+1\right)=\left(\frac{49-x}{51}+1\right)+\left(\frac{52-x}{48}+1\right)\)
\(\Leftrightarrow\frac{43-x+57}{57}+\frac{46-x+54}{54}=\frac{49-x+51}{51}+\frac{52-x+48}{48}\)
\(\Leftrightarrow\frac{100-x}{57}+\frac{100-x}{54}=\frac{100-x}{51}+\frac{100-x}{48}\)
\(\Leftrightarrow\frac{100-x}{57}+\frac{100-x}{54}-\left(\frac{100-x}{51}+\frac{100-x}{48}\right)=0\)
\(\Leftrightarrow\left(100-x\right)\left[\left(\frac{1}{57}+\frac{1}{54}\right)-\left(\frac{1}{51}+\frac{1}{48}\right)\right]=0\) (*)
Vì\(\frac{1}{57}< \frac{1}{51},\frac{1}{54}< \frac{1}{48}\Rightarrow\left(\frac{1}{57}+\frac{1}{54}\right)< \left(\frac{1}{51}+\frac{1}{48}\right)\)
\(\Rightarrow\left(\frac{1}{57}+\frac{1}{54}\right)-\left(\frac{1}{51}+\frac{1}{48}\right)< 0\)
Phương trình (*) xảy ra khi: \(100-x=0\Leftrightarrow x=100\)
Vậy phương trình có nghiệm duy nhất là x = 100
Giải phương trình:
a) x+1 /9 + x+2 /8 = x+3 /7 + x+4 /6
b) x+43 /57 + x+46 /54 = x+49 /51 + x+52 /48
a) \(\frac{x+1}{9}+\frac{x+2}{8}=\frac{x+3}{7}+\frac{x+4}{6}\)
\(\Rightarrow\left(\frac{x+1}{9}+1\right)+\left(\frac{x+2}{8}+2\right)=\left(\frac{x+3}{7}+1\right)+\left(\frac{x+4}{6}+1\right)\)
\(\Rightarrow\frac{x+10}{9}+\frac{x+10}{8}-\frac{x+10}{7}-\frac{x+10}{6}=0\)
\(\Rightarrow\left(x+10\right)\left(\frac{1}{9}+\frac{1}{8}-\frac{1}{7}-\frac{1}{6}\right)=0\)
Mà \(\frac{1}{9}+\frac{1}{8}-\frac{1}{7}-\frac{1}{6}\ne0\)
\(\Rightarrow x+10=0\)
\(\Rightarrow x=-10\)
Vậy x = -10
b) \(\frac{x+43}{57}+\frac{x+46}{54}=\frac{x+49}{51}+\frac{x+52}{48}\)
\(\Rightarrow\left(\frac{x+43}{57}+1\right)+\left(\frac{x+46}{54}+1\right)=\left(\frac{x+49}{51}+1\right)+\left(\frac{x+52}{48}+1\right)\)
\(\Rightarrow\frac{x+100}{57}+\frac{x+100}{54}=\frac{x+100}{51}+\frac{x+100}{48}\)
\(\Rightarrow\frac{x+100}{57}+\frac{x+100}{54}-\frac{x+100}{51}-\frac{x+100}{48}=0\)
\(\Rightarrow\left(x+100\right)\left(\frac{1}{57}+\frac{1}{54}-\frac{1}{51}-\frac{1}{48}\right)=0\)
Mà \(\frac{1}{57}+\frac{1}{54}-\frac{1}{51}-\frac{1}{48}\ne0\)
\(\Rightarrow x+100=0\)
\(\Rightarrow x=-100\)
Vậy x = -100
a.\(\frac{x+1}{9}+\frac{x+2}{8}=\frac{x+3}{7}+\frac{x+4}{6}\)
=>\(\frac{x+1}{9}+1+\frac{x+2}{8}+1=\frac{x+3}{7}+1+\frac{x+4}{6}+1\)
<=> \(\frac{x+1+9}{9}+\frac{x+2+8}{8}=\frac{x+3+7}{7}+\frac{x+4+6}{6}\)
<=>\(\frac{x+10}{9}+\frac{x+10}{8}=\frac{x+10}{7}+\frac{x+10}{6}\)
<=> \(\frac{x+10}{9}+\frac{x+10}{8}-\frac{x+10}{7}-\frac{x+10}{6}=0\)
<=> \(\left(x+10\right)\left(\frac{1}{9}+\frac{1}{8}-\frac{1}{7}-\frac{1}{6}\right)=0\)
<=> x+10=0
<=> x=-10
Vậy tập nghiệm của phương trình trên là S=\(\left\{-10\right\}\)
b. \(\frac{x+43}{57}+\frac{x+46}{54}=\frac{x+49}{51}+\frac{x+52}{48}\)
=> \(\frac{x+43}{57}+1+\frac{x+46}{54}+1=\frac{x+49}{51}+1+\frac{x+52}{48}+1\)<=>\(\frac{x+43+57}{57}+\frac{x+46+54}{54}=\frac{x+49+51}{51}+\frac{x+52+48}{48}\)
<=>\(\frac{x+100}{57}+\frac{x+100}{54}=\frac{x+100}{51}+\frac{x+100}{48}\)
<=>\(\frac{x+100}{57}+\frac{x+100}{54}-\frac{x+100}{51}-\frac{x+100}{48}=0\)
<=>(x+100)\(\left(\frac{1}{57}+\frac{1}{54}-\frac{1}{51}-\frac{1}{48}\right)\)=0
<=>x+100=0
<=>x= -100
Vậy tập nghiệm của phương trình trên là S=\(\left\{-100\right\}\)
trừ 1 vào mỗi phân thức ở hai vế
\(\left(x-2016\right)\left(\frac{1}{1953}+\frac{1}{1955}+\frac{1}{1957}+\frac{1}{1959}-\frac{1}{63}-\frac{1}{61}-\frac{1}{59}-\frac{1}{57}\right)=0\)
vì 1/1953 + 1/1955 + 1/1957 + 1/1959 -1/63 -1/61-1/59-1/57 khác0
=> x-2016=0 => x=2016
bạn có thể làm rỏ hơn được không.mình cảm ơn bạn nhiều
a, <=> (59-x/41 + 1) + (57-x/43 + 1) + (55-x/45 + 1) + (53-x/47 + 1) + (51-x/49 + 1) = 0
<=> 100-x/41 + 100-x/43 + 100-x/45 + 100-x/47 + 100-x/49 = 0
<=> (100-x).(1/41+1/43+1/45+1/47+1/49) = 0
<=> 100-x=0 ( vì 1/41+1/43+1/45+1/47+1/49 > 0 )
<=> x=100
Vậy x = 100
b, <=> 2-x/2016 + 1 = (1-x/2017 + 1) + (1 - x/2018)
<=> 2018-x/2016 = 2018-x/2017 + 2018-x/2018
<=> 2018-x/2016 - 2018-x/2017 - 2018-x/2018 = 0
<=> (2018-x).(1/2016-1/2017-1/2018) = 0
<=> 2018-x=0 ( vì 1/2016-1/2017-1/2018 khác 0 )
<=> x=2018
Vậy x=2018
Tk mk nha
\(\frac{59-x}{41}+\frac{57-x}{43}+\frac{55-x}{45}+\frac{53-x}{47}+\frac{51-x}{49}=-5\)
\(\Rightarrow\frac{59-x}{41}+1+\frac{57-x}{43}+1+\frac{55-x}{45}+1+\frac{53-x}{47}+1+\frac{51-x}{49}+1\)\(=-5+5\)
\(\Rightarrow\frac{59-x+49}{41}+\frac{57-x+43}{43}+\frac{55-x+45}{45}+\frac{53-x+47}{47}\)\(+\frac{51-x+49}{49}=0\)
\(\Rightarrow\frac{100-x}{41}+\frac{100-x}{43}+\frac{100-x}{45}+\frac{100-x}{47}+\frac{100-x}{49}=0\)
\(\Rightarrow\left(100-x\right)\left(\frac{1}{41}+\frac{1}{43}+\frac{1}{45}+\frac{1}{47}+\frac{1}{49}\right)=0\)
Vì \(\frac{1}{41}+\frac{1}{43}+\frac{1}{45}+\frac{1}{47}+\frac{1}{49}\ne0\)
\(\Rightarrow100-x=0\)
\(\Rightarrow x=100\)
\(=\frac{59-x}{41}+1+\frac{57-x}{43}+1+\frac{55-x}{45}+1+\frac{53-x}{47}+1+\)
\(\frac{51-x}{49}+1=-5+5\)
đoạn này có 5 là do mik mượn 5 con 1 khi đó nha
\(=\frac{100-x}{41}+\frac{100-x}{43}+\frac{100-x}{45}+\frac{100-x}{47}+\)
\(\frac{100-x}{49}=0\)
\(=\left(100-x\right)\left(\frac{1}{41}+\frac{1}{43}+\frac{1}{45}+\frac{1}{47}+\frac{1}{49}\right)=0\)
mà \(\frac{1}{41}+\frac{1}{43}+\frac{1}{45}+\frac{1}{47}+\frac{1}{49}< 0\)
nên 100-x=0
còn lại bn từ lm
\(\frac{1}{x-1}-\frac{2}{2-x}=\frac{5}{\left(x-1\right)\left(x-2\right)}\) điều kiện xác định là :\(x\ne1;x\ne2\)
<=>\(\frac{1}{x-1}+\frac{2}{x-2}=\frac{5}{\left(x-1\right)\left(x-2\right)}\)
<=>\(\frac{x-2}{\left(x-1\right)\left(x-2\right)}+\frac{2\left(x-1\right)}{\left(x-2\right)\left(x-1\right)}=\frac{5}{\left(x-1\right)\left(x-2\right)}\)
=>x-2+2x-2=5
<=>3x-4=5
<=>3x=9
<=>x=3( thỏa mãn)
Vậy phương trình có tập nghiệm S={3}
<=>\(\frac{x+43}{57}+1+\frac{x+46}{54}+1=\frac{x+49}{51}+1+\frac{x+52}{48}+1\)
<=>\(\frac{x+100}{57}+\frac{x+100}{54}=\frac{x+100}{51}+\frac{x+100}{48}\)
<=>\(\frac{x+100}{57}+\frac{x+100}{54}-\frac{x+100}{51}-\frac{x+100}{48}=0\)
<=>\(\left(x+100\right)\left(\frac{1}{57}+\frac{1}{54}-\frac{1}{51}-\frac{1}{48}\right)=0\)
Vì \(\frac{1}{57}+\frac{1}{54}-\frac{1}{51}-\frac{1}{48}\ne0\)
=>x+100=0
<=>x=-100
k nha bạn
\(\Leftrightarrow\frac{37x+1648}{1026}=\frac{11x+556}{272}\Rightarrow\left(37x+1648\right)272=1026\left(11x+556\right)\)
<=>(37x+1648)272=272(37x+1648)
=>272(37x+1648)=1026(11x+556)
=>10064x+448256=11286x+570456
<=>-1222x=122200
=>x=122200:-1222
=>x=-100 ( dễ hiểu chưa hả )