Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ae ơi đề bài lại như này nhé chứng minh a 1 + a2 +....+a99 <1
\(a_k=\frac{2k+1}{k^2\left(k+1\right)^2}=\frac{k^2+2k+1-k^2}{k^2\left(k+1\right)^2}=\frac{\left(k+1\right)^2}{k^2\left(k+1\right)^2}-\frac{k^2}{k^2\left(k+1\right)^2}=\frac{1}{k^2}-\frac{1}{\left(k+1\right)^2}\)
\(S=\frac{1}{1^2}-\frac{1}{\left(1+1\right)^2}+\frac{1}{2^2}-\frac{1}{\left(2+1\right)^2}+\frac{1}{3^2}-\frac{1}{\left(3+1\right)^2}+...+\frac{1}{99^2}-\frac{1}{\left(99+1\right)^2}\)
\(S=1-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+\frac{1}{3^2}-\frac{1}{4^2}+...+\frac{1}{99^2}-\frac{1}{100^2}=1-\frac{1}{100^2}< 1\) ( đpcm )
...
a) Thay x=2 vào phương trình ta có:
(2.2+1)(9.2+2k)+5(2+2)=40
5(18+2k)+20=40
90+10k=20
10k=-70
k=-7
b) Thay x=1 vào phương trình ta có:
2(2.1+1)+18=3(1+2)(2.1+k)
2+2+18=(3+6)(2+k)
22=20+18k
2=18k
k=1/9
sai:2k+1>2.2k
2k+1=2.2k
sửa lại thì có thể đúng :v