Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
uses crt;
var j,i:longint;
b,a:int64;
begin
clrscr;
writeln('nhap tu va mau');readln(a,b);
if b=0 then writeln('day ko la phan so') else begin
for i:=1 to a do
for j:=1 to b do
if (a mod i=0)and(b mod j=0)and(i=j) then begin
a:=a div i;
b:=b div j;
end;
for i:=1 to a do
for j:=1 to b do
if (a mod i=0)and(b mod j=0)and(i=j) then begin
a:=a div i;
b:=b div j;
end;
end;
if a mod b=0 then writeln('ket qua sau khi rut gon la ',a div b)
else writeln('ket qua sau khi rut gon la ',a,'/',b);
readln
end.
program rutgon;
var a,b,m,R,n:int64;
begin
write('nhap so tu nhien m:');
readln(m)
; write('nhap so tu nhien n:');
readln(n);
a:=n;
b:=m;
while b<>0 do begin
R:=a mod b;
a:=b;
b:=R;
end;
write('phan so da duoc rut gon la:',m/a:0:0,'/',n/a:0:0);
readln;
end.
Nhanh-gọn-dễ hiểu
S=1+4+7+..+n
Tổng S có số số hạng là \(\frac{\left(n-1\right)}{3}+1=\frac{n+2}{3}\)
Tổng S có giá trị là
\(S=\frac{\left(n+1\right)}{2}.\frac{n+2}{3}=\frac{\left(n+1\right)\left(n+2\right)}{6}\)
Mình trình bày lại :
Ta có \(\frac{7x-8}{2x-3}=\frac{4\left(2x-3\right)-\frac{1}{2}\left(2x-3\right)+\frac{5}{2}}{2x-3}=\frac{7}{2}+\frac{5}{2\left(2x-3\right)}\)
Để A đạt giá trị lớn nhất thì 2x-3 đạt giá trị nhỏ nhất. Vì x là số tự nhiên nên 2x-3 là số tự nhiên
=> giá trị nhỏ nhất của 2x-3 là 1 , suy ra x = 2
Vậy Max A = 6 <=> x = 2
Câu 1:
\(\frac{x+13}{2000}+\frac{x+12}{2001}+\frac{x+11}{2002}+\frac{x+8052}{2013}=0\)
\(\Leftrightarrow\frac{x+13}{2000}+\frac{x+12}{2001}+\frac{x+11}{2002}+\frac{x+2013}{2013}+\frac{6039}{2013}=0\)
\(\Leftrightarrow\frac{x+13}{2000}+\frac{x+12}{2001}+\frac{x+11}{2002}+\frac{x+2013}{2013}+3=0\)
\(\Leftrightarrow\frac{x+13}{2000}+1+\frac{x+12}{2001}+1+\frac{x+11}{2002}+1+\frac{x+2013}{2013}=0\)
\(\Leftrightarrow\frac{x+2013}{2000}+\frac{x+2013}{2001}+\frac{x+2013}{2002}+\frac{x+2013}{2013}=0\)
\(\Leftrightarrow\left(x+2013\right)\left(\frac{1}{2000}+\frac{1}{2001}+\frac{1}{2002}+\frac{1}{2013}\right)=0\)
\(\Leftrightarrow x+2013=0\). Do \(\frac{1}{2000}+\frac{1}{2001}+\frac{1}{2002}+\frac{1}{2013}\ne0\)
\(\Leftrightarrow x=-2013\)
Câu 2:
b)Áp dụng BĐT Cauchy-Schwarz ta có:
\(\left(1^2+1^2+1^2\right)\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)
\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)
\(\Leftrightarrow a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)
Đẳng thức xảy ra khi \(a=b=c\)
Thay \(a=b=c\) vào \(B=a^2+b^2+c^2-\left(a+2b+3c\right)+2017\)
\(B=3a^2-6a+2017=3a^2-6a+3+2014\)
\(=3\left(a^2-2a+1\right)+2014=3\left(a-1\right)^2+2014\ge2014\)
Đẳng thức xảy ra khi \(a=1\)
Lại có \(a=b=c\Rightarrow a=b=c=1\)
Vậy \(B_{Min}=2014\) khi \(a=b=c=1\)
Câu 5:
\(S_n=1^3+2^3+...+n^3=\left[\frac{n\left(n+1\right)}{2}\right]^2\)
Trước hết ta chứng minh \(1^3+2^3+...+n^3=\left(1+2+...+n\right)^2\) (*)
Với \(n=1;n=2\) (*) đúng
Giả sử (*) đúng với n=k khi đó (*) thành:
\(1^3+2^3+...+k^3=\left(1+2+...+k\right)^2\)
Thật vậy giả sử (*) đúng với n=k+1 khi đó (*) thành:
\(1^3+2^3+...+k^3+\left(k+1\right)^3=\left(1+2+...+k+k+1\right)^2\left(1\right)\)
Cần chứng minh \(\left(1\right)\) đúng, mặt khác ta lại có:
\(\left(1+2+...+n\right)^2=\left[\frac{n\left(n+1\right)}{2}\right]^2=\frac{\left(n^2+n\right)^2}{4}\)
Đẳng thức cần chứng minh tương đương với:
\(\frac{\left(k^2+k\right)^2}{4}+\left(k+1\right)^3=\frac{\left(k^2+3k+2\right)^2}{4}\)
\(\Leftrightarrow4k^3+12k^2+12k+4=4\left(k+1\right)^3\)
\(\Leftrightarrow4\left(k+1\right)^3=4\left(k+1\right)^3\)
Theo nguyên lí quy nạp ta có Đpcm
Vậy \(S_n=1^3+2^3+...+n^3=\left(1+2+...+n\right)^2=\left[\frac{n\left(n+1\right)}{2}\right]^2\)
b)\(A=n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1\)
\(=\left(n^2+3n\right)\left(n^2+3n+2\right)+1\)
Đặt \(t=n^2+3n\) thì ta có:
\(A=t\left(t+2\right)+1=t^2+2t+1\)
\(=\left(t+1\right)^2=\left(n^2+3n+1\right)^2\) là SCP với mọi \(n\in N\)
\(C1:\)\(S\)\(=225\)\(cm^2\)\(\Leftrightarrow\)\(S=\left(4x-1\right)^2\)
\(\Rightarrow\left(4x-1\right)^2=225\)
\(\Rightarrow\left(4x-1\right)^2=15^2\Rightarrow4x-1=15\)
\(\Rightarrow4x=16\)
\(\Rightarrow x=4\)