Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta phải chứng minh , 2. x + 3 . y chia hết cho 17, thì 9 . x + 5 . y chia hết cho 17
Ta có 4 ﴾2x + 3y ﴿ + ﴾ 9x + 5y ﴿ = 17x + 17y chia hết cho 17
Do vậy ; 2x + 3y chia hết cho 17 4 ﴾ 2x +3y ﴿ chia hết cho 17 9x + 5y chia hết cho 17
Ngược lại ; Ta có 4 ﴾ 2x + 3y ﴿ chia hết cho 17 mà ﴾ 4 ; 17 ﴿ = 1
2x + 3y chia hết cho 17
Vậy ...
Gọi A = a + 2b và B = abb
Ta có : B = 100a + 11b và :
100A = 100 . ( a + 2b )
100A = 100a + 200b
=> 100A - B = 100a + 200b - 100a - 11b
=> 100A - B = 200b - 11b = 189b chia hết cho 7 ( vì 189 chia hết cho 7 )
=> 100A - B chia hết cho 7
mà A chia hết cho 7 => 100A chia hết cho 7 => B chia hết cho 7 ( đpcm )
TL
Bài 1: a) x E { 2 ; 4 ; 32 }
b) x E { 0 ; 2 }
c) x E { 18 ; 43 ; 68 }
d) x E { 0 }
e) x E { 0 ; 1; 2; 6; 9 ; 16 ; 51}
Bài 2: Số tổ = ƯCLN ( 24 , 108 ) = 12 (tổ)
Số nhóm = ( 18 , 24 ) = 6 (nhóm) => Mỗi nhóm có 3 nam 4 nữ
Khi nào rảnh vào kênh H-EDITOR xem vid nha!!! Thanks!
theo đề ta có :10a+b=(3a+2b).2
Mà đề cho 3a+2b⋮17
⇒(3a+2b).2⋮17
Vậy 10a+b⋮17
theo đề ta có :10a+b=(3a+2b).2
Mà đề cho 3a+2b⋮17
⇒(3a+2b).2⋮17
Vậy 10a+b⋮17
đúng thì tick cho mình nha mn
1 giải
Ta có 17 chia hết cho 17
suy ra 17a+3a+b chia hết cho 17
suy ra 20a+2b chia hết cho 17
rút gọn cho 2
suy ra 10a+b chia hét cho 17
2 giải
* nếu a-5b chia hết cho 17 thì 10a + b chia hết cho 17
vì a-5b chia hết cho 17 nên 10(a-5b) chia hết cho 17 => 10a-50b chia hết cho 17 => 10a-50b+51b chia hết cho 17 hay 10a + b chia hết cho 17 (1) *
nếu 10a + b chia hết cho 17 thì a-5b chia hết cho 17
vì 10a+b chia hết cho 17 nên 10a + b - 51b chia hết cho 17 => 10a - 50b chia hết cho 17 => 10(a-5) chia hết cho 17 mà (10;17)=1 nên a-5b chia hết cho 17 (2)
Từ (1) và (2) suy ra điều phải chứng minh
3 bó tay
Câu trả lời hay nhất: + ta chứng minh a,b,c có ít nhất một số chia hết cho 3
giả sử cả 3 số trên đều không chia hết cho 3
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1)
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn
Vậy có ít nhất 1 số chia hết cho 3
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn
vậy có ít nhất 1 số cgia hết cho 4
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5)
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3
=> phải có ít nhất 1 số chia hết cho 5
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60
giúp mk nha!