Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu như theo kiến thức lớp 9 chưa học về đồ thị nào khác ngoài đồ thị bậc nhất (là 1 đường thẳng) thì 2 dạng bài này gần như tương đương nhau. Nhưng khi bạn lên cấp III và học những loại đồ thị đường cong bậc hai (ellipse, parabol, hyperbol, đường tròn,...) thì 2 dạng bài này rõ ràng khác xa nhau nhé. (Vì xác định hàm số thì đó có thể là hàm số kiểu gì cũng được, nhưng viết ptđt thì chỉ có liên quan đến đường thẳng thôi.)
Khi thay số âm vào mũ chẵn (2;4;6...) thì luôn luôn phải đóng mở ngoặc, nếu ko sẽ dẫn tới kết quả sai ngay lập tức:
Ví dụ: \(x^2-1\) với \(x=-2\)
Nếu đóng mở ngoặc: \(\left(-2\right)^2-1=3\) (đúng)
Không đóng mở ngoặc: \(-2^2-1=-5\) (sai)
Trong trường hợp mũ lẻ (mũ 1; 3; 5...) có thể không cần ngoặc nếu thấy đủ tự tin về khả năng toán của bản thân.
*Trong một tam giác:
- Đường trung bình là đường nối 2 trung điểm của 2 cạnh.
- Đường trung tuyến là đường nối từ 1 đỉnh đến trung điểm cạnh đối diện đỉnh đó.
- Đường trung trực là đường vuông góc tại trung điểm của 1 cạnh.
Giải pt chứa nhiều dấu trị tuyệt đối thì cần xét các khoảng giá trị.
Để xét các khoảng giá trị, ta căn cứ vào xét các khoảng mà tại đó dấu trị tuyệt đối có thể phá.
Ví dụ: Ta biết $|x-a|=x-a$ nếu $x\geq a$ và $a-x$ nếu $x< a$
Do đó, khi gặp phải pt:
$|x-1|+|x+1|=3x-5$ chả hạn. Ta thấy:
$|x-1|=x-1$ nếu $x\geq 1$ và $1-x$ nếu $x< 1$
$|x+1|=x+1$ nếu $x\geq -1$ và $-x-1$ nếu $x< -1$
Như vậy, kết hợp cả 2 điều trên thì ta xét các khoảng sau:
TH1: $x\geq 1$
TH2: $-1\leq x< 1$
TH3: $x< -1$
Nếu cả 2 đều khác 0 thì em thích tìm theo x hay theo y cũng được, đều đúng
Nhưng thường người ta hay tìm y theo x hơn
+)Muốn tính \(\cot\) bằng máy tính, bạn ấn \(\dfrac{1}{\tan\left(...\right)}\) (...) là số đo góc
Từ số ra góc thì bạn ấn Shift + nút \(\sin,\cos,\tan\) rồi nhập tỉ số lượng giác vô thì ra số đo góc nha
+)\(\sin^2x=\sin x\cdot\sin x;\sin x^2=\sin\left(x\cdot x\right)\)
\(\Rightarrow\sin^2x\ne\sin x^2\)
Bài 1:
ĐKXĐ: \(x\ge\dfrac{1}{2}\)
Ta có: \(\sqrt{5x^2}=2x-1\)
\(\Leftrightarrow5x^2=\left(2x-1\right)^2\)
\(\Leftrightarrow5x^2-4x^2+4x-1=0\)
\(\Leftrightarrow x^2+4x-1=0\)
\(\text{Δ}=4^2-4\cdot1\cdot\left(-1\right)=20\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-4-2\sqrt{5}}{2}=-2-\sqrt{5}\left(loại\right)\\x_2=\dfrac{-4+2\sqrt{5}}{2}=-2+\sqrt{5}\left(loại\right)\end{matrix}\right.\)
Bài 1: Bình phương hai vế lên có giải ra được kết quả. Nhưng phải kèm thêm điều kiện $2x-1\geq 0$ do $\sqrt{5x^2}\geq 0$
PT \(\Leftrightarrow \left\{\begin{matrix} 2x-1\geq 0\\ 5x^2=(2x-1)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ x^2+4x-1=0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ (x+2)^2-5=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ (x+2-\sqrt{5})(x+2+\sqrt{5})=0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ x=-2\pm \sqrt{5}\end{matrix}\right.\) (vô lý)
Vậy pt vô nghiệm.