Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ddaaaaaaaaay đầu bài sai !!!
và tớ cũng trà lời lần thứ 2 rồi đấy !!!!
Ta có : \(\frac{1+2a}{15}=\frac{7-3a}{20}=\frac{3b}{23+7a}\)
- Vì \(\frac{1+2a}{15}=\frac{7-3a}{20}\)
=> \(20\left(1+2a\right)=15\left(7-3a\right)\)
\(\Leftrightarrow20+40a=105-45a\Leftrightarrow40a+45a=105-20\)
\(\Leftrightarrow95a=95\Leftrightarrow a=1\)
- Thay a = 1 vào phương trình \(\frac{7-3a}{20}=\frac{3b}{23+7a}\) , ta có : \(\frac{7-3.1}{20}=\frac{3b}{23+7.1}\)
\(\Leftrightarrow\frac{4}{20}=\frac{3b}{30}\Leftrightarrow\frac{1}{5}=\frac{b}{10}\Leftrightarrow5b=10\Leftrightarrow b=2\)
Vậy a =1 , b = 2
Ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{e}\Rightarrow\frac{a^4}{b^4}=\frac{b^4}{c^4}=\frac{c^4}{d^4}=\frac{d^4}{e^4}=\frac{2a^4}{2b^4}=\frac{2b^4}{2c^4}=\frac{2c^4}{2d^4}=\frac{2d^4}{2e^4}\)
Áp dụng tính chất dãy tỹ số bằng nhau ta có:
\(\frac{2a^4}{2b^4}=\frac{2b^4}{2c^4}=\frac{2c^4}{2d^4}=\frac{2d^4}{2e^4}=\frac{2a^4+2b^4+2c^4+2d^4}{2b^4+2c^4+2d^4+2e^4}\)
em nghĩ là c ghi sai đề :)
Sửa lai đề : Cho a;b;c;d;e khác 0
CM : \(\frac{2a^4+3b^4+4c^4+5d^4}{2b^4+3c^4+4d^4+5c^4}=\frac{a}{e}\)
Giải :
Đặt \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{e}=k\)
\(\Rightarrow k^4=\frac{a^4}{b^4}=\frac{b^4}{c^4}=\frac{c^4}{d^4}=\frac{d^4}{e^4}=\frac{2a^4}{2b^4}=\frac{3b^4}{3c^4}=\frac{4c^4}{4d^4}=\frac{5d^4}{5e^4}\)
Áp dụng TC DTSBN ta được : \(k^4=\frac{2a^4+3b^4+4c^4+5d^4}{2b^4+3c^4+4d^4+5e^4}\)(1)
Ta lại có : \(k^4=k.k.k.k=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}.\frac{d}{e}=\frac{a}{e}\) (2)
Từ (1) ; (2) => \(\frac{2a^4+3b^4+4c^4+5d^4}{2b^4+3c^4+4d^4+5c^4}=\frac{a}{e}\) (đpcm)
Bài 1:
\(A=\left(\frac{-5}{11}+\frac{7}{22}-\frac{4}{33}-\frac{5}{44}\right):\left(38\frac{1}{122}-39\frac{7}{22}\right)\)
\(=\frac{-49}{132}:\left(-\frac{879}{671}\right)=\frac{2989}{105408}\)
Bài 2:
\(\frac{4}{5}-\left(\frac{-1}{8}\right)=\frac{7}{8}-x\)
<=> \(\frac{7}{8}-x=\frac{27}{40}\)
<=> \(x=\frac{7}{8}-\frac{27}{40}=\frac{1}{5}\)
Vậy...
đầu bài sai rùi !!!
(chắc chắn một tỉ phần trăm)