Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
D K A C B O E F I
Câu a:
Vì ABCD nội tiếp đường tròn tâm (O) mà AB là đường kính nên \(\widehat{ACB}=\widehat{ADB}=90^0\)Nên hai tam giác \(\Delta ACB;\Delta ADB\)Vuông tại C và D . áp dụng pitago cho hai tam giác vuông:
\(\hept{\begin{cases}AC^2+BC^2=AB^2\\AD^2+BD^2=AB^2\end{cases}\Leftrightarrow AC^2+BC^2=AD^2+BD^2\left(dpcm\right)}\)
Câu b:
Vì E,F là trung điểm của AC ;AD nên \(\hept{\begin{cases}AD⊥OF\\AC⊥OE\end{cases}\Leftrightarrow\hept{\begin{cases}\widehat{AED}=90^0\\\widehat{AFO}=90^0\end{cases}}}\)Nên tứ giác AEOF nội tiếp nội tiếp đường tròn đường kính AO tức đường tròn nội tiếp AEOF đường tròn tâm I là trung điểm của AO
Câu c:
vì O,F là trung điểm của AB và AD nên OF là đường trung bình của \(\Delta ABD\)Nên OF // BD \(\Rightarrow\widehat{AOF}=\widehat{ABD\left(1\right)}\)
Mà \(\widehat{AEK}=\widehat{AOF}\left(2\right)\)( góc \(\widehat{AEF}\)chính là góc \(\widehat{AEK}\))
Mặt khác : \(\widehat{AEK}=\widehat{ADK}\left(3\right)\)Từ 1,2,3 ta có : \(\widehat{ADK}=\widehat{ABD}=\frac{1}{2}\widebat{AD}\)nên KD là tiếp tuyến của đường tròn (O) tại D
- AEDK là hình chữ nhật khi và chỉ khi hai đường chéo \(AD=EK\)và F là trung điểm của EK
A E C D K F
nên EF Là đường trung bình của \(\Delta ACD\) \(\Rightarrow\)EF // DC \(\Rightarrow\widehat{AEK}=\widehat{ACD}\)(So le trong) mà AEKD là HCN \(\Rightarrow\widehat{DAC}=\widehat{AEK}\)\(\Rightarrow\widehat{DAC}=\widehat{ACD}\)Hay \(\Delta ACD\)cân tại D