K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
15 tháng 5 2021

Lời giải:

$n$ giác có nghĩa là n cạnh. Hình lăng trụ có đáy là đa giác n cạnh. Ở đây, n có hàm ý đại diện cho 1 số như 3 (tam giác), 4 (tứ giác),.....

Bạn vẽ thử 1 hình lăng trụ đứng có n cạnh ra (cho n=3) chả hạn. Khi đó, tương ứng với n cạnh của đáy ta sẽ có n mặt bên. Thêm vào đó có 2 mặt đáy, nên tổng cộng có n+2 mặt.

Công thức ở chỗ khoanh màu cam chỉ là công thức người ta xây dựng nên để áp dụng cho nhanh. Như kiểu công thức diện tích, công thức chu vi thôi.

Trong TH làm bài, bạn chỉ cần vẽ thử 1 lăng trụ đứng (có đáy là tam giác chả hạn) rồi đếm. Đếm TH riêng thì cũng sẽ suy ra TH chung thôi. 

 

15 tháng 5 2021

Em cảm ơn chị ạ ! 

13 tháng 5 2021

Vì chu vi bằng nửa chu vi đáy nhân 2.

13 tháng 5 2021

vì 2.(pi.r).l thì giống như là (2.pi.r).l mà (2.pi.r) là chu vi đáy rồi đó 

 

1 tháng 6 2020

tự làm là hạnh phúc của mỗi công dân

Hình lăng trụSỐ cạnh của một đáySố mặtSỐ đỉnhSỐ cạnh
a681218
b571015

a: m=n+2

d=2n;

c=3n

b: Số cạnh của một đáy là:

n=d/2=20/2=10(cạnh)

c: Hình lăng trụ có 20 đỉnh thì 

Số mặt là m=n+2=10+2=12(mặt)

Số cạnh là c=3n=30(cạnh)

d: Không thể làm một hình lăng trụ có 15 đỉnh bởi 15 là số lẻ 

1 tháng 11 2021

Câu 20:

Ta có:  \(\widehat{A}-\widehat{B}=40^0\Rightarrow\widehat{B}=\widehat{A}-40^0\)

\(\widehat{A}=2\widehat{C}\Rightarrow\widehat{C}=\frac{\widehat{A}}{2}\)

Vì AB//CD (gt) \(\Rightarrow\widehat{A}+\widehat{D}=180^0\)(hai góc trong cùng phía)\(\Rightarrow\widehat{D}=180^0-\widehat{A}\)

Tứ giác ABCD \(\Rightarrow\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^0\Rightarrow\widehat{A}+\left(\widehat{A}-40^0\right)+\frac{\widehat{A}}{2}+\left(180^0-\widehat{A}\right)=360^0\)

Và đến đây bạn dễ dàng tìm được góc A và từ đó suy ra được góc D.

1 tháng 11 2021

Câu 29: Ta có: 

\(\hept{\begin{cases}xy+x+y=3\\yz+y+z=8\\xz+x+z=15\end{cases}}\Leftrightarrow\hept{\begin{cases}xy+x+y+1=4\\yz+y+z+1=9\\xz+x+z+1=16\end{cases}\Leftrightarrow}\hept{\begin{cases}x\left(y+1\right)+\left(y+1\right)=4\\y\left(z+1\right)+\left(z+1\right)=9\\x\left(z+1\right)+\left(z+1\right)=16\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(x+1\right)\left(y+1\right)=4\\\left(y+1\right)\left(z+1\right)=9\\\left(z+1\right)\left(x+1\right)=16\end{cases}}\)

Đặt \(\hept{\begin{cases}x+1=a\\y+1=b\\z+1=c\end{cases}}\)với a,b,c > 1, khi đó ta có 

\(\hept{\begin{cases}ab=4\\bc=9\\ca=16\end{cases}}\Leftrightarrow\hept{\begin{cases}abbc=4.9\\c=\frac{9}{b}\\ca=16\end{cases}}\Leftrightarrow\hept{\begin{cases}16b^2=36\\c=\frac{9}{b}\\a=\frac{16}{c}\end{cases}}\Leftrightarrow\hept{\begin{cases}b^2=\frac{36}{16}=\frac{9}{4}\\c=\frac{9}{b}\\a=\frac{16}{c}\end{cases}}\Leftrightarrow\hept{\begin{cases}b=\frac{3}{2}\\c=\frac{9}{\frac{3}{2}}=6\\a=\frac{16}{6}=\frac{8}{3}\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=a-1=\frac{8}{3}-1=\frac{5}{3}\\y=b-1=\frac{3}{2}-1=\frac{1}{2}\\z=c-1=6-1=5\end{cases}}\)

Vậy \(P=x+y+z=\frac{5}{3}+\frac{1}{2}+5=\frac{10+3+30}{6}=\frac{43}{6}\)

9 tháng 5 2021

Dấu bằng xảy ra khi đẳng thức VT = VP biện luận để tìm ra bài này chắc là tam giác đều

9 tháng 5 2021

Nguyễn Ngọc Lộc   THẾ BẠN CÓ GIẢI ĐƯỢC KHÔNG , mình cần cách giải và cần biết tại sao để tìm duduwowcj dấu bằng ạ 

16 tháng 9 2021

86.NHỮNG PHÉP TÍNH THÚ VỊ

24+36=1

11+13=1

158+207=1

46+54=1

thì khi đó người làm câu hỏi bị sai/ mình nghĩ thế

16 tháng 9 2021

câu 1 ko hề dể dàng

câu 2 sai