Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{e}\Rightarrow\frac{a^4}{b^4}=\frac{b^4}{c^4}=\frac{c^4}{d^4}=\frac{d^4}{e^4}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}.\frac{d}{e}\)
\(\Rightarrow\frac{2a^4}{2b^4}=\frac{3b^4}{3c^4}=\frac{4c^4}{4d^4}=\frac{5d^4}{5e^4}=\frac{a}{e}\) (1)
Ta lại có : \(\frac{2a^4}{2b^4}=\frac{3b^4}{3c^4}=\frac{4c^4}{4d^4}=\frac{5d^4}{5e^4}=\frac{2a^4+3b^4+4c^4+5d^4}{2b^4+3c^4+4d^4+5e^4}\) (TC DTSBN) (2)
Từ (1) ; (2) \(\Rightarrow\frac{2a^4+3b^4+4c^4+5d^4}{2b^4+3c^4+4d^4+5e^4}=\frac{a}{e}\) (đpcm)
Ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{e}\Rightarrow\frac{a^4}{b^4}=\frac{b^4}{c^4}=\frac{c^4}{d^4}=\frac{d^4}{e^4}=\frac{2a^4}{2b^4}=\frac{2b^4}{2c^4}=\frac{2c^4}{2d^4}=\frac{2d^4}{2e^4}\)
Áp dụng tính chất dãy tỹ số bằng nhau ta có:
\(\frac{2a^4}{2b^4}=\frac{2b^4}{2c^4}=\frac{2c^4}{2d^4}=\frac{2d^4}{2e^4}=\frac{2a^4+2b^4+2c^4+2d^4}{2b^4+2c^4+2d^4+2e^4}\)
em nghĩ là c ghi sai đề :)
Sửa lai đề : Cho a;b;c;d;e khác 0
CM : \(\frac{2a^4+3b^4+4c^4+5d^4}{2b^4+3c^4+4d^4+5c^4}=\frac{a}{e}\)
Giải :
Đặt \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{e}=k\)
\(\Rightarrow k^4=\frac{a^4}{b^4}=\frac{b^4}{c^4}=\frac{c^4}{d^4}=\frac{d^4}{e^4}=\frac{2a^4}{2b^4}=\frac{3b^4}{3c^4}=\frac{4c^4}{4d^4}=\frac{5d^4}{5e^4}\)
Áp dụng TC DTSBN ta được : \(k^4=\frac{2a^4+3b^4+4c^4+5d^4}{2b^4+3c^4+4d^4+5e^4}\)(1)
Ta lại có : \(k^4=k.k.k.k=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}.\frac{d}{e}=\frac{a}{e}\) (2)
Từ (1) ; (2) => \(\frac{2a^4+3b^4+4c^4+5d^4}{2b^4+3c^4+4d^4+5c^4}=\frac{a}{e}\) (đpcm)
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{e}\Rightarrow\frac{a^4}{b^4}=\frac{b^4}{c^4}=\frac{c^4}{d^4}=\frac{d^4}{e^4}=\frac{2a^4}{2b^4}=\frac{3b^4}{3c^4}=\frac{4c^4}{4d^4}=\frac{5d^4}{5e^4}\)
Theo TCDTSBN ta có:
\(\frac{2a^4}{2b^4}=\frac{3b^4}{3c^4}=\frac{4c^4}{4d^4}=\frac{5d^4}{5e^4}=\frac{2a^4+3b^4+4c^4+5d^4}{2b^4+3c^4+4d^4+5e^4}\left(1\right)\)
Lại có: \(\frac{a^4}{b^4}=\frac{a}{b}\cdot\frac{a}{b}\cdot\frac{a}{b}\cdot\frac{a}{b}=\frac{a}{b}\cdot\frac{b}{c}\cdot\frac{c}{d}\cdot\frac{d}{e}=\frac{a}{e}\left(2\right)\)
từ (1) và (2) => dpdcm
Ta có :
Thay \(a+b+c=2016\) vào A ta có :
\(A=\frac{a}{2016-c}+\frac{b}{2016-a}+\frac{c}{2016-b}\)
\(A=\frac{a}{a+b+c-c}+\frac{b}{a+b+c-a}+\frac{c}{a+b+c-b}\)
\(A=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)
\(\Rightarrow\)\(A>1\)\(\left(1\right)\)
Lại có :
\(A=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+b}{a+b+c}+\frac{b+c}{a+b+c}+\frac{c+a}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
\(\Rightarrow\)\(A< 2\)\(\left(2\right)\)
Từ (1) và (2) suy ra : \(1< A< 2\)
Vậy A không phải là số nguyên
Chúc bạn học tốt ~
Ta có:
\(A=\frac{a}{2016-c}+\frac{b}{2016-a}+\frac{c}{2016-b}\)
\(A=\frac{a}{a+b+c-c}+\frac{b}{a+b+c-a}+\frac{c}{a+b+c-b}\)
\(A=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}\)
tự làm tiếp nhé!
\(\frac{a}{b}< \frac{c}{d}\)
\(\Rightarrow ad< bc\)
\(\Rightarrow ad+ab< bc+ab\)
\(\Rightarrow a\left(b+d\right)< b\left(a+c\right)\)
\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\)
Vậy \(\frac{a}{b}< \frac{a+c}{b+d}\)
a, Đặt \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=k\)\(\Rightarrow a=2k\); \(b=3k\); \(c=5k\)
Ta có: \(B=\frac{a+7b-2c}{3a+2b-c}=\frac{2k+7.3k-2.5k}{3.2k+2.3k-5k}=\frac{2k+21k-10k}{6k+6k-5k}=\frac{13k}{7k}=\frac{13}{7}\)
b, Ta có: \(\frac{1}{2a-1}=\frac{2}{3b-1}=\frac{3}{4c-1}\)\(\Rightarrow\frac{2a-1}{1}=\frac{3b-1}{2}=\frac{4c-1}{3}\)
\(\Rightarrow\frac{2\left(a-\frac{1}{2}\right)}{1}=\frac{3\left(b-\frac{1}{3}\right)}{2}=\frac{4\left(c-\frac{1}{4}\right)}{3}\) \(\Rightarrow\frac{2\left(a-\frac{1}{2}\right)}{12}=\frac{3\left(b-\frac{1}{3}\right)}{2.12}=\frac{4\left(c-\frac{1}{4}\right)}{3.12}\)
\(\Rightarrow\frac{\left(a-\frac{1}{2}\right)}{6}=\frac{\left(b-\frac{1}{3}\right)}{8}=\frac{\left(c-\frac{1}{4}\right)}{9}\)\(\Rightarrow\frac{3\left(a-\frac{1}{2}\right)}{18}=\frac{2\left(b-\frac{1}{3}\right)}{16}=\frac{\left(c-\frac{1}{4}\right)}{9}\)
\(\Rightarrow\frac{3a-\frac{3}{2}}{18}=\frac{2b-\frac{2}{3}}{16}=\frac{c-\frac{1}{4}}{9}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{3a-\frac{3}{2}}{18}=\frac{2b-\frac{2}{3}}{16}=\frac{c-\frac{1}{4}}{9}=\frac{3a-\frac{3}{2}+2b-\frac{2}{3}-\left(c-\frac{1}{4}\right)}{18+16-9}=\frac{3a-\frac{3}{2}+2b-\frac{2}{3}-c+\frac{1}{4}}{25}\)
\(=\frac{\left(3a+2b-c\right)-\left(\frac{3}{2}+\frac{2}{3}-\frac{1}{4}\right)}{25}=\left(4-\frac{23}{12}\right)\div25=\frac{25}{12}\times\frac{1}{25}=\frac{1}{12}\)
Do đó: +) \(\frac{a-\frac{1}{2}}{6}=\frac{1}{12}\)\(\Rightarrow a-\frac{1}{2}=\frac{6}{12}\)\(\Rightarrow a=1\)
+) \(\frac{b-\frac{1}{3}}{8}=\frac{1}{12}\)\(\Rightarrow b-\frac{1}{3}=\frac{8}{12}\)\(\Rightarrow b=1\)
+) \(\frac{c-\frac{1}{4}}{9}=\frac{1}{12}\)\(\Rightarrow c-\frac{1}{4}=\frac{9}{12}\)\(\Rightarrow c=1\)
a, \(\frac{a}{b}=\frac{c}{d}=\frac{a-c}{b-d}\Rightarrow\frac{a^4}{b^4}=\frac{c^4}{d^4}=\frac{\left(a-c\right)^4}{\left(b-d\right)^4}\) (1)
\(\frac{a^4}{b^4}=\frac{c^4}{d^4}=\frac{5a^4}{5b^4}=\frac{7c^4}{7d^4}=\frac{5a^4+7c^4}{5b^4+7d^4}\)(2)
Từ (1) và (2) => đpcm
b, \(\frac{a}{b}=\frac{c}{d}=\frac{2c}{2d}=\frac{a+2c}{b+2d}\) (3)
\(\frac{a}{b}=\frac{c}{d}=\frac{3c}{3d}=\frac{a-3c}{b-3d}\) (4)
Từ (3) và (4) => đpcm
c, làm giống câu a
a) ta có \(\frac{a}{b}=\frac{c}{d}=\frac{a+2c}{b+2d}\left(1\right)\)
\(\frac{a}{b}=\frac{c}{d}=\frac{a-3c}{b-3d}\left(2\right)\)
(1) và (2) => \(\frac{a+2c}{b+2d}=\frac{a-3c}{b-3d}\)
b, Có: a/b < c/d => ad < bc
Xét a.(b+d)-b.(a+c) = ab+ad-ba-bc = ad-bc < 0
=> a.(b+d) < b.(a+c)
=> a/b < a+c/b+d
c, Đề phải là cho a+b+c = 2016 chứ bạn
Có : A = a/a+b+c-c + b/a+b+c-a + c/a+b+c-b = a/a+b + b/b+c + c/c+a
Vì a,b,c thuộc Z+ nên a/a+b > 0 ; b/b+c > 0 ; c/c+a > 0
=> A > a/a+b+c + b/a+b+c + c/a+b+c = 1
Lại có : a < a+b ; b < b+c ; c < c+a => 0 < a/a+b < a ; 0 < b/b+c < 1 ; 0 < c/c+a < 1
=> A < a+c/a+b+c + b+a/a+b+c + c+b/a+b+c = 2
=> 1 < A < 2
=> A ko phải là số tự nhiên
Tk mk nha
a,ÁP DỤNG TÍNH CHẤT DÃY TỈ SỐ BẰNG NHAU.
TA CÓ:\(\frac{a}{b}\)=\(\frac{b}{c}\)=\(\frac{c}{d}\)=\(\frac{d}{e}\)=>\(\frac{2a^2}{2b^2}\)=\(\frac{3b^2}{3c^2}\)=\(\frac{4c^2}{4d^2}\)=\(\frac{5d^2}{5e^2}\)=\(\frac{2a^2+3b^2+4c^2+5d^2}{2b^2+3c^2+4d^2+5e^2}\)(đfcm)