Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình đang lái xe đạp xuống dốc cao đang lên raaaat khổ mong mọi người giúp!PLS PLS PLS PLS PLS PLS PLS PLS
\(q^3\left(2x-1\right)+5\left(x-3\right)\)
\(=2xq^3-q^3+5\left(x-3\right)\)
\(=2xq^3-q^3+5x-15\)
\(\left(x-4\right)^2=\left(2x+1\right)^2\)
\(\Leftrightarrow\left(x-4\right)^2-\left(2x+1\right)^2=0\)
\(\Leftrightarrow\left(x-4-2x-1\right)\left(x-4+2x+1\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(3x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\3x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\\3\left(x-1\right)=0\end{cases}}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=5\\x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\\x=1\end{cases}}}\)
a/Ta có : M là Trung điểm của AD
N là trung diểm của BC
\(\Rightarrow\)MN là dường trung bình của hình thang
Theo định lí dường trung bình của hình thang( học tới đó thì cm minh ngay)
Thì MN=(AB+CD)/2
b/k có câu nào cho cm như vậy hết
`A=(x^2-2)(x^2+x-1)-x(x^3+x^2-3x-2)`
`=x^4+x^3-x^2-2x^2-2x+2-x^4-x^3+3x^2+2x`
`=(x^4-x^4)+(x^3-x^3)+(3x^2-x^2-2x^2)+(2x-2x)+2`
`=2`
\(\left(x^2-2x+3\right)\left(\frac{1}{2x}-5\right)\)
\(=\frac{x^2}{2x}-5x^2-\frac{2x}{2x}+10x+\frac{3}{2x}-15\)
\(=\frac{x^2}{2x}-5x^2-16+10x+\frac{3}{2x}\)
\(=-5x^2+\frac{x^2}{2x}+\frac{20x^2}{2x}+\frac{3}{2x}-16\)
\(=-5x^2+\frac{x^2+20x+3}{2x}-16\)
học tốt
(x^2-2x+3)(1/2x-5)=1/2x^3-5x^2-x^2+10x+3/2x-15=1/2x^3-6x^2+11,5x-15
a) \(\left(2x+1\right)^2-4\left(x+2\right)^2=12\)
\(\Leftrightarrow4x^2+4x+1-4\left(x^2+4x+4\right)=12\)
\(\Leftrightarrow4x^2+4x+1-4x^2-16x-16-12=0\)
\(\Leftrightarrow-12x-27=0\)
\(\Leftrightarrow x=\frac{-9}{4}\)
b) xem lại đề
c) \(\left(x-3\right)\left(x^2+3x+9\right)+x\left(x-3\right)\left(3-x\right)=1\)
\(\Leftrightarrow x^3-27-x\left(x-3\right)^2=1\)
\(\Leftrightarrow x^3-27-x\left(x^2-6x+9\right)-1=0\)
\(\Leftrightarrow x^3-28-x^3+6x^2-9x=0\)
\(\Leftrightarrow6x^2-9x-28=0\)
\(\Leftrightarrow6\left(x^2-\frac{3}{2}x-\frac{14}{3}\right)=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\frac{3}{4}+\frac{9}{16}-\frac{251}{48}=0\)
\(\Leftrightarrow\left(x-\frac{3}{4}\right)^2=\frac{251}{48}=\left(\pm\sqrt{\frac{251}{48}}\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{3}{4}=\sqrt{\frac{251}{48}}=\frac{\sqrt{753}}{12}\\x-\frac{3}{4}=-\sqrt{\frac{251}{48}}=\frac{-\sqrt{753}}{12}\end{matrix}\right.\)
\(\Leftrightarrow x=\frac{\pm\sqrt{753}}{12}+\frac{3}{4}=\frac{9\pm\sqrt{753}}{12}\)
d) \(\left(x+1\right)^3-\left(x-1\right)^3-6\left(x-1\right)^2=-19\)
\(\Leftrightarrow x^3+3x^2+3x+1-x^3+3x^2-3x+1-6x^2+12x-6+19=0\)
\(\Leftrightarrow12x+15=0\)
\(\Leftrightarrow x=\frac{-5}{4}\)
Theo giả thiết:
\(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca=3ab+3bc+3ca\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=0\)
\(\Leftrightarrow2\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
Dễ thấy \(VT\ge0\forall a;b;c\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\)\(\Leftrightarrow a=b=c\)(đpcm)
\(\sqrt{x-2016}+\sqrt{y-2017}+\sqrt{z-2018}+3024=\frac{1}{2}\left(x+y+z\right)\)
\(\Leftrightarrow2\left(\sqrt{x-2016}+\sqrt{y-2017}+\sqrt{z-2018}+3024\right)=x+y+z\)
\(\Leftrightarrow2\sqrt{x-2016}+2\sqrt{y-2017}+2\sqrt{z-2018}+6048=x+y+z\)
\(\Leftrightarrow x-2\sqrt{x-2016}+y-2\sqrt{y-2017}+z-2\sqrt{z-2018}+6048=0\)
\(\Leftrightarrow x-2016-2\sqrt{x-2016}+1+y-2017+2\sqrt{y-2017}+1+z-2018-2\sqrt{z-2018}+1=0\)
\(\Leftrightarrow\left(\sqrt{x-2016}-1\right)^2+\left(\sqrt{y-2017}-1\right)^2+\left(\sqrt{z-2018}-1\right)^2=0\)
\(ĐK:x\ge2016;y\ge2017;z\ge2018\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{x-2016}-1=0\\\sqrt{y-2017}-1=0\\\sqrt{z-2018}-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}\sqrt{x-2016}=1\\\sqrt{y-2017}=1\\\sqrt{z-2018}=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2017\\y=2018\\z=2019\end{cases}}}\)
\(\dfrac{x}{a}=\dfrac{m-\dfrac{x}{2}}{m}\)
\(\Rightarrow xm=a\left(m-\dfrac{x}{2}\right)\)
\(\Rightarrow xm=am-\dfrac{ax}{2}\)
\(\Rightarrow2xm=2am-ax\)
\(\Rightarrow2xm+ax=2am\)
\(\Rightarrow x\left(2m+a\right)=2am\)
\(\Rightarrow x=\dfrac{2am}{a+2m}\)
vâng em cảm ơn ạ