Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(cos\alpha=\frac{1}{2}\Leftrightarrow\alpha=\frac{-\pi}{3}\)(vì \(\frac{-\pi}{2}< \alpha< 0\))
\(cot\left(\frac{\pi}{3}-\alpha\right)=cot\left(\frac{2\pi}{3}\right)=\frac{-\sqrt{3}}{3}\)
Mình trình bày cho dễ hiểu nha
\(sina-\sqrt{3}cosa\)
\(=2\cdot\left(\frac{1}{2}sina-\frac{\sqrt{3}}{2}cosa\right)\)
\(=2\cdot\left(sinacos\frac{pi}{6}-cosasin\frac{pi}{6}\right)\)
\(=2\cdot sin\left(a-\frac{pi}{6}\right)\)
Ta có\(-1\le sin\left(a-\frac{pi}{6}\right)\le1\)
\(-2\le sin\left(a-\frac{pi}{6}\right)\le2\)
Vậy Min=-2
Max=2
a) Bảng phân bố tần số (về tuổi thọ bóng đèn điện) có thể viết dưới dạng như sau:
Số trung bình về tuổi thọ của bóng đèn trong bảng phân bố trên là:
.(3x1150 + 6x1160 + 12x1170 + 6x1180 + 3x1190)
= 1170.
b) Số trung bình về chiều dài lá cây dương xỉ trong bài tập 2 trong là:
.(8x15 + 18x25 + 24x35 + 10x45) = 31 (cm).
\(\overrightarrow{AG}+\overrightarrow{BG}+\overrightarrow{CG}=\overrightarrow{0}\Leftrightarrow\overrightarrow{CG}=-\overrightarrow{AG}-\overrightarrow{BG}\)
\(\Rightarrow\overrightarrow{AB}+\overrightarrow{CG}=\overrightarrow{AB}-\overrightarrow{AG}-\overrightarrow{BG}=\overrightarrow{GB}-\overrightarrow{BG}=2\overrightarrow{GB}\)
\(\Rightarrow\left|\overrightarrow{AB}+\overrightarrow{CG}\right|=2GB\)
Gọi BN là đường cao của tam giác ABC
Theo Pythagoras:\(BN^2=BC^2-\left(\dfrac{AB}{2}\right)^2=4a^2-a^2=3a^2\Rightarrow BN=\sqrt{3}a\)
Vì BN là đường cao trong tam giác đều nên cũng là đường trong tuyến trong tam giác đều \(\Rightarrow GB=\dfrac{2}{3}BN=\dfrac{2}{3}\cdot\sqrt{3}a=\dfrac{2\sqrt{3}}{3}a\)
\(\Rightarrow\left|\overrightarrow{AB}+\overrightarrow{CG}\right|=\dfrac{4\sqrt{3}}{3}a\)