K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2018

tích đúng mình làm cho

6 tháng 7 2018

mình không hiểu 

9 tháng 10 2018

\(\cos^2\alpha.\cos^2\beta+\cos^2\alpha.\sin^2\beta+\sin^2\alpha\)

\(=\cos^2\alpha.\left(\cos^2\beta+\sin^2\beta\right)+\sin^2\alpha\)

\(=\cos^2\alpha.1+\sin^2\alpha\)

\(=\cos^2\alpha+\sin^2\alpha\)

\(=1\)

2 tháng 10 2020

a) (2x2 - x) + 4x - 2 = 0

x(2x - 1) + 2(2x - 1) = 0

(2x - 1)(x + 2) = 0

2x - 1 = 0 hoặc x + 2 = 0

* 2x - 1 = 0

2x = 1

x = \(\frac{1}{2}\)

* x + 2 = 0

x = -2

Vậy x = -2; x = \(\frac{1}{2}\)

b) x2 - 6x + 8 = 0

x2 - 2x - 4x + 8 = 0

(x2 - 2x) + (-4x + 8) = 0

x(x - 2) - 4(x - 2) = 0

(x - 2)(x - 4) = 0

x - 2 = 0 hoặc x - 4 = 0

* x - 2 = 0

x = 2

* x - 4 = 0

x = 4

Vậy x = 2; x = 4

c) x4 - 8x2 - 9 = 0

x4 + x2 - 9x2 - 9 = 0

(x4 - 9x2) + (x2 - 9) = 0

x2(x2 - 9) + (x2 - 9) = 0

(x2 - 9)(x2 + 1) = 0

x2 - 9 = 0 (vì x2 + 1 > 0 với mọi x)

x2 = 9

x = 3 hoặc x = -3

Vậy x = 3; x = -3

A B C D E H

ta có AD là phân giác góc BAC thì \(\widehat{BAD}=\widehat{EAD}=\frac{60^0}{2}=30^0\)

hình vẽ ko đc đẹp thông cảm

ta kẻ \(DE\\ AB;E\in AC\)

\(\Rightarrow\frac{EC}{AC}=\frac{DE}{AB}\)(hệ quả của đlý Talets nhé)

\(DE\\ AB\Rightarrow\widehat{AED}=180^0-\widehat{BAC}=180^0-60^0=120^0\)

TỪ ĐÓ TA TÍNH ĐC GÓC EAD=300 \(\Rightarrow\Delta AED\)cân tại E

\(\Rightarrow AE=ED\)

\(\Rightarrow\frac{EC}{AC}=\frac{AE}{AB}\)(thay vào cái tỉ số ở trên nhé)

\(\Rightarrow\frac{EC}{AC}=\frac{AC-AE}{AC}\)

\(\Rightarrow\frac{EC}{AC}=1-\frac{AE}{AC}\)(1)

ta kẻ:\(EH\perp AD\left(H\in AD\right)\)từ đó EH sẽ là đường cao của tam giác AED cân tại E

\(\Rightarrow AH=HE\)(TC)

\(\Delta AHE\) VUÔNG TẠI H,theo định lý Pytago TA CÓ:

\(AH^2+HE^2=AE^2\)

TA có tính chất sau:trong tam giác vuông có 1 góc bằng 30 độ thì cạnh đối diện với góc 30 độ bằng nửa cạnh huyền

\(\Rightarrow AE=2HE\)(áp dụng vào tam giác AHE)

\(\Rightarrow AH^2+HE^2=4HE^2\)

\(\Rightarrow AH^2=3HE^2\)

MÀ  \(AH+HE=AD;AH=AE\Rightarrow2AH=AD\Rightarrow4AH^2=AD^2\)

\(\Rightarrow4.AH^2=12HE^2\Rightarrow AD^2=3.\left(4.HE^2\right)\)

\(\Rightarrow AD^2=3.AE^2\)(DO HE=2AE)

\(\Rightarrow AD=\sqrt{3}AE\)(do cạnh của tam giác luôn lớn hơn 0)

ta thày vào (1),có:​

\(\frac{AE}{AB}=1-\frac{AE}{AC}\Rightarrow\frac{\sqrt{3}AE}{AB}=\sqrt{3}-\frac{\sqrt{3}AE}{AC}\)

\(\Rightarrow\frac{AD}{AB}=\sqrt{3}-\frac{AD}{AC}\)
\(\Rightarrow\frac{AD}{AB}+\frac{AD}{AC}=\sqrt{3}\)

\(\Rightarrow AD.\left(\frac{1}{AB}+\frac{1}{AC}\right)=\sqrt{3}\)

\(\Rightarrow\frac{1}{AB}+\frac{1}{AC}=\frac{\sqrt{3}}{AD}\)(ĐPCM)