Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3+8y^3+2xy^2+x^2y\)
\(=x^3+2x^2y-x^2y-2xy^2+4xy^2+8y^3\)
\(=x^2\left(x+2y\right)-xy\left(x+2y\right)+4y^2\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x^2-xy+4y^2\right)\)
1.
a. x2 - 2x + 1 = 0
x2 - 2x*1 + 12 = 0
(x-1)2 = 0
............( tới đây tui bí rùi tự suy nghĩ rùi lm tiếp ik)
1, Tìm x biết:
a, x2 - 2x +1 = 0
(x-1)2 = 0
x-1 = 0
x = 1. Vậy ...
b, ( 5x + 1)2 - (5x - 3) ( 5x + 3) = 30
25x2 +10x + 1 - (25x2 -9) = 30
25x2 +10x + 1 - 25x2 +9 = 30
10x + 10 =30
10(x+1) = 30
x+1 =3
x = 2. vậy ...
c, ( x - 1) ( x2 + x + 1) - x ( x +2 ) ( x - 2) = 5
(x3 - 1) - x(x2 -4) = 5
x3 - 1 - x3 + 4x = 5
4x - 1 = 5
4x = 6
x = \(\dfrac{3}{2}\) .vậy ...
d, ( x - 2)3 - ( x - 3) ( x2 + 3x + 9 ) + 6 ( x + 1)2 = 15
x3 - 6x2 + 12x - 8 - (x3 - 27) + 6 (x2 + 2x +1) =15
x3 - 6x2 + 12x - 8 - x3 + 27 + 6x2 + 12x +6 =15
24x + 25 = 15
24x = -10
x = \(\dfrac{-5}{12}\) vậy ...
a) \(\frac{6xy+4y}{4x^2y^2}+\frac{2xy-4y}{4x^2y^2}\)
\(=\frac{6xy+4y+2xy-4y}{4x^2y^2}\)
\(=\frac{8xy}{4x^2y^2}\)
\(=\frac{2}{xy}\)
b) \(\frac{5}{x+3}-\frac{3}{x-3}+\frac{30}{x^2-9}\)
\(=\frac{5\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}-\frac{3\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}+\frac{30}{\left(x-3\right)\left(x+3\right)}\)
\(=\frac{5x-15-3x-9+30}{\left(x+3\right)\left(x-3\right)}\)
\(=\frac{2x+6}{\left(x+3\right)\left(x-3\right)}\)
\(=\frac{2\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}\)
\(=\frac{2}{x-3}\)
c) \(\frac{2x+8}{\left(x+2\right)^2}:\frac{x+4}{x+2}\)
\(=\frac{2\left(x+4\right)}{\left(x+2\right)^2}\cdot\frac{x+2}{x+4}\)
\(=\frac{2\left(x+4\right)\left(x+2\right)}{\left(x+2\right)\left(x+2\right)\left(x+4\right)}\)
\(=\frac{2}{x+2}\)
Trả lời:
Ta có: ( x - 2y )3 = x3 - 3.x2.2y + 3.x.( 2y )2 - ( 2y )3 = x3 - 6x2y + 12xy2 - 8y3 ( HĐT thứ 5 - lập phương của 1 hiệu )
=> Chọn b
Bài 1:
a) -16 +(x-3)2
<=> (x-3)2-16
<=> (x-3)2 -42
<=> (x-3-4)(x-3+4)
<=> (x-7)(x+1)
b) 64+16y+y2
<=> y2 + 2.8.y + 82
<=> (y+8)2
c) \(\dfrac{1}{8}-8x^3\)
\(\Leftrightarrow\left(\dfrac{1}{2}\right)^3-\left(2x\right)^3\)
\(\Leftrightarrow\left(\dfrac{1}{2}-2x\right)\left(\dfrac{1}{4}+x+4x^2\right)\)
d)\(x^2-x+\dfrac{1}{4}\)
\(\Leftrightarrow x^2-2.\dfrac{1}{2}.x+\left(\dfrac{1}{2}\right)^2\)
\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2\)
e) x4 + 4x2 + 4
<=> (x2)2 + 2.2.x2 +22
<=> (x2 + 2)2
g)\(8x^3+60x^2y+150xy^2+125y^3\)
\(\Leftrightarrow\left(2x+5y\right)^3\)
Trả lời:
a, \(\left(x^2-2y\right)\left(x^4+2x^2y+4y^2\right)-x^3\left(x-y\right)\left(x^2+xy+y^2\right)+8y^3\)
\(=\left(x^2\right)^3-\left(2y\right)^3-x^3\left(x^3-y^3\right)+8y^3\)
\(=x^6-8y^3-x^6+x^3y^3+8y^3\)
\(=x^3y^3\)
b, \(\left(x-2\right)\left(x^2+2x+4\right)-\left(x-1\right)^3+7\)
\(=x^3-8-\left(x^3-3x^2+3x-1\right)+7\)
\(=x^3-8-x^3+3x^2-3x+1+7\)
\(=3x^2-3x\)
c, \(x\left(x+2\right)\left(2-x\right)+\left(x+3\right)\left(x^2-3x+9\right)\)
\(=x\left(4-x^2\right)+x^3+27\)
\(=4x-x^3+x^3+27\)
\(=4x+27\)
\(C=3.\left(x^2-8y^3-15\right)-3\left(x-2y\right)\left(x^2+2xy+4y^2\right)\)
\(=3x^2-24y^3-45-3\left[x\left(x^2+2xy+4y^2\right)-2y\left(x^2+2xy+4y^2\right)\right]\)
\(=3x^2-24y^3-45-3\left[\left(x^3+2x^2y+4xy^2\right)-\left(2x^2y+4xy^2+8y^3\right)\right]\)
\(=3x^2-24y^3-45-3\left(x^3+2x^2y+4xy^2-2x^2y-4xy^2-8y^3\right)\)
\(=3x^2-24y^3-45-3\left(x^3-8y^3\right)\)
\(=3x^2-24y^3-45-3x^3+24y^3\)
\(=3x^2-3x^3-45\)