Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3\(x\) -48.6 = 33.22 + 23.32 - 122
3\(x\) - 288 = 27.4 + 8.9 - 144
3\(x\) - 288 = 108 + 72 - 144
3\(x\) - 288 = 180 - 144
3\(x\) - 288 = 36
3\(x\) = 36 + 288
3\(x\) = 324
\(x\) = 324: 3
\(x\) = 108
a, 4.(3\(x\) - 2) - 3.(5\(x\) + 6) = 35
12\(x\) - 8 - 15\(x\) - 18 = 35
\(x\)(12 - 15) - ( 8 + 18) = 35
- 3\(x\) - 26 = 35
3\(x\) = - 26 - 35
3\(x\) = - 61
\(x\) = - \(\dfrac{61}{3}\)
a,DB//At⇒\(\widehat{tAB}=\widehat{ABD}=32^o\left(2.góc.so.le.trong\right)\)
b,Ta có:\(\widehat{tCB}+\widehat{CBD}=58^o+122^o=180^o\)
Mà 2 góc này là 2 góc trong cùng phía⇒Ci//DB
Mà DB//At⇒Ci//At
c, Ta có:\(\widehat{ABC}=\widehat{ABD}+\widehat{DBC}=32^o+58^o=90^o\Rightarrow AB\perp BC\)
a: \(\dfrac{x}{6}=\dfrac{y}{-3}\)
mà x-y=27
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{6}=\dfrac{y}{-3}=\dfrac{x-y}{6-\left(-3\right)}=\dfrac{27}{9}=3\)
=>\(x=3\cdot6=18;y=-3\cdot3=-9\)
b: \(\dfrac{x}{8}=\dfrac{y}{1,5}\)
mà x-4y=-0,2
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{8}=\dfrac{y}{1,5}=\dfrac{x-4y}{8-4\cdot1,5}=\dfrac{-0.2}{2}=-0.1\)
=>\(x=-0,1\cdot8=-0,8;y=-0,1\cdot1,5=-0,15\)
c: \(\dfrac{x}{y}=\dfrac{11}{13}\)
=>\(\dfrac{x}{11}=\dfrac{y}{13}\)
mà 2x+3y=122
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{11}=\dfrac{y}{13}=\dfrac{2x+3y}{2\cdot11+3\cdot13}=\dfrac{122}{61}=2\)
=>\(x=2\cdot11=22;y=2\cdot13=26\)
d: \(\dfrac{x}{y}=\dfrac{5}{-3}\)
=>\(\dfrac{x}{5}=\dfrac{y}{-3}\)
mà 3x-2y=42
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{5}=\dfrac{y}{-3}=\dfrac{3x-2y}{3\cdot5-2\cdot\left(-3\right)}=\dfrac{42}{21}=2\)
=>\(x=2\cdot5=10;y=2\cdot\left(-3\right)=-6\)
e: 3x=5y
=>\(\dfrac{x}{5}=\dfrac{y}{3}\)
mà x-y=10,2(vì y-x=-10,2)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{x-y}{5-3}=\dfrac{10.2}{2}=5.1\)
=>\(x=5,1\cdot5=25,5;y=5,1\cdot3=15,3\)
a:=>3x=15
=>x=5
b: =>x+3=0,96
=>x=-2,04
c: =>x^2=36
=>x=6 hoặc x=-6
`a, 3/4=(3x)/20`
`3x*4=3*20`
`3x*4=60`
`3x=60 \div 4`
`3x=15`
`x=15 \div 3`
`x=5`
`b, (1,2)/(x+3)=5/4`
`1,2*4=(x+3)*5`
`4,8=(x+3)*5`
`x+3= 4,8 \div 5`
`x+3=0,96`
`x=0,96-3`
`x=-2,04`
`c, (x^2)/32=9/8`
`x^2*8=32*9`
`x^2*8=288`
`x^2=288 \div 8`
`x^2=36`
`x^2=(+-6)^2`
`-> \text {x= 6 hoặc -6}`
Để A=0 thì 3x+15=0
hay x=-5
Để B=0 thì \(2x^2-32=0\)
\(\Leftrightarrow x^2=16\)
=>x=4 hoặc x=-4