Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(A=\frac{151}{102}-\frac{1}{6}-\frac{1}{12}-\frac{1}{20}-...-\frac{1}{2550}\)
\(A=\frac{151}{102}-\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{2550}\right)\)
\(A=\frac{151}{102}-\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{50.51}\right)\)
\(A=\frac{151}{102}-\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{50}-\frac{1}{51}\right)\)
\(A=\frac{151}{102}-\left(\frac{1}{2}-\frac{1}{51}\right)\)
\(A=\frac{151}{102}-\frac{49}{102}\)
\(A=\frac{151-49}{102}\)
\(A=\frac{102}{102}\)
\(A=1\)
Vậy \(A=1\)
Chúc bạn học tốt ~
\(A=\frac{151}{102}-\frac{1}{6}-\frac{1}{12}-\frac{1}{20}-...-\frac{1}{2550}\)
\(A=\frac{151}{102}-\left(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{50\cdot51}\right)\)
\(A=\frac{151}{102}-\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{50}-\frac{1}{51}\right)\)
\(A=\frac{151}{102}-\left(\frac{1}{2}-\frac{1}{51}\right)\)
\(A=\frac{151}{102}-\frac{49}{102}=1\)
1673 có tổng các chữ số là 1+6+7+3 = 17
2547 có tổng các chữ số là 2+5+4+7 = 18
73 có tổng các chữ số là 7+3 = 10
1980 có tổng các chữ số là 1+9+8+0 = 18
Trong các số 1673; 2547; 73; 1980
a, Những số chia hết cho 3là: 2547; 1980.
b, Những số chia hết cho 9 là: 2547; 1980
c, Không có số nào chia hết cho 3 mà không chia hết cho 9
d, Những số chia hết cho cả 3 và 9 là: 2547; 1980
e, Những số chia hết cho cả 2;3;5;9 là: 1980
12+1 + 22+2 + 32+3 + 42+4 + ... + 482+48 + 492+49 + 502+50
= (1+2+3+4+..+48+49+50) +(12+22+32+42+...+482+492+502)
Đến đay bạn tự tính nha
`5`
`a, -7/21 +(1+1/3)`
`=-7/21 + ( 3/3 + 1/3)`
`=-7/21+ 4/3`
`=-7/21+ 28/21`
`= 21/21`
`=1`
`b, 2/15 + ( 5/9 + (-6)/9)`
`= 2/15 + (-1/9)`
`= 1/45`
`c, (9-1/5+3/12) +(-3/4)`
`= ( 45/5-1/5 + 3/12)+(-3/4)`
`= ( 44/5 + 3/12)+(-3/4)`
`= 9,05 +(-0,75)`
`=8,3`
`6`
`x+7/8 =13/12`
`=>x= 13/12 -7/8`
`=>x=5/24`
`-------`
`-(-6)/12 -x=9/48`
`=> 6/12 -x=9/48`
`=>x= 6/12-9/48`
`=>x=5/16`
`---------`
`x+4/6 =5/25 -(-7)/15`
`=>x+4/6 =1/5 + 7/15`
`=> x+ 4/6=10/15`
`=>x=10/15 -4/6`
`=>x=0`
`----------`
`x+4/5 = 6/20 -(-7)/3`
`=>x+4/5 = 6/20 +7/3`
`=>x+4/5 = 79/30`
`=>x=79/30 -4/5`
`=>x= 79/30-24/30`
`=>x= 55/30`
`=>x= 11/6`
\(5)\)
\(A=\dfrac{-7}{21}+\left(1+\dfrac{1}{3}\right)\)
\(A=\dfrac{-7}{21}+\dfrac{4}{3}\)
\(A=\dfrac{-7}{21}+\dfrac{28}{21}\)
\(A=1\)
\(--------------\)
\(B=\dfrac{2}{15}+\left(\dfrac{5}{9}+\dfrac{-6}{9}\right)\)
\(B=\dfrac{2}{15}+\dfrac{-1}{9}\)
\(B=\dfrac{18}{135}+\dfrac{-15}{135}\)
\(B=\dfrac{1}{45}\)
\(------------\)
\(C=9-\dfrac{1}{5}+\dfrac{3}{12}+\dfrac{-3}{4}\)
\(C=\dfrac{44}{5}+\dfrac{3}{12}+\dfrac{-3}{4}\)
\(C=\dfrac{528}{60}+\dfrac{15}{60}+\dfrac{-3}{4}\)
\(C=\dfrac{181}{20}+\dfrac{-3}{4}\)
\(C=\dfrac{181}{20}+\dfrac{-15}{20}\)
\(C=\dfrac{83}{10}\)
\(6)\)
\(a)\) \(x+\dfrac{7}{8}=\dfrac{13}{12}\)
\(x=\dfrac{13}{12}-\dfrac{7}{8}\)
\(x=\dfrac{104}{96}-\dfrac{84}{96}\)
\(x=\dfrac{5}{24}\)
\(b)\) \(\dfrac{-6}{12}-x=\dfrac{9}{48}\)
\(\dfrac{-1}{2}-x=\dfrac{3}{16}\)
\(x=\dfrac{-1}{2}-\dfrac{3}{16}\)
\(x=\dfrac{-8}{16}-\dfrac{3}{16}\)
\(x=\dfrac{-11}{16}\)
\(c)\) \(x+\dfrac{4}{6}=\dfrac{5}{25}-\left(-\dfrac{7}{15}\right)\)
\(x+\dfrac{4}{6}=\dfrac{5}{25}+\dfrac{7}{15}\)
\(x+\dfrac{4}{6}=\dfrac{75}{375}+\dfrac{105}{375}\)
\(x+\dfrac{4}{6}=\dfrac{12}{25}\)
\(x=\dfrac{12}{25}-\dfrac{4}{6}\)
\(x=\dfrac{72}{150}-\dfrac{100}{150}\)
\(x=\dfrac{-14}{75}\)
\(d)\) \(x+\dfrac{4}{5}=\dfrac{6}{20}-\left(-\dfrac{7}{3}\right)\)
\(x+\dfrac{4}{5}=\dfrac{6}{20}+\dfrac{7}{3}\)
\(x+\dfrac{4}{5}=\dfrac{18}{60}+\dfrac{140}{60}\)
\(x+\dfrac{4}{5}=\dfrac{79}{30}\)
\(x=\dfrac{79}{30}-\dfrac{4}{5}\)
\(x=\dfrac{79}{30}-\dfrac{24}{30}\)
\(x=\dfrac{11}{6}\)
\(\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{2550}=\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{50.51}\)
\(=\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{50}-\frac{1}{51}=\frac{1}{3}-\frac{1}{51}=\frac{16}{51}\)
\(\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{2550}=\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+...+\frac{1}{50\cdot51}\)
\(=\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{50}-\frac{1}{51}\)
\(=\frac{1}{3}-\frac{1}{51}=\frac{16}{51}\)