K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 giờ trước (14:19)

tui còn ko đc gp nào nè

3 giờ trước (14:31)

tui 14 gp

15 tháng 10 2019

                                                                Bài giải

Câu F mình làm ở câu trước của bạn rồi nên giờ mình trả lời tiếp luôn nha ! Bài tìm GTLN tí nữa mifh làm cho ! Đang bận !

Câu 1 : Tìm GTNN

\(H=\left|2x+5\right|+\left|8-2x\right|\)

Áp dụng tính chất \(\left|A\right|\ge A\)Ta có :

\(\left|2x+5\right|\ge2x+5\text{ Dấu " = " xảy ra khi }2x+5\ge0\text{ }\Rightarrow\text{ }2x\ge-5\text{ }\Rightarrow\text{ }x\ge-\frac{5}{2}\)

\(\left|8-2x\right|\ge8-2x\text{ Dấu " = " xảy ra khi }8-2x\ge0\text{ }\Rightarrow\text{ }2x\le8\text{ }\Rightarrow\text{ }x\le4\)

\(\Rightarrow\text{ }\left|2x+8\right|+\left|8-2x\right|\ge2x+5+8-2x\)

\(\Rightarrow\text{ }\left|2x+8\right|+\left|8-2x\right|\ge13\text{ Dấu " = " xảy ra khi }-\frac{5}{2}\le x\le4\)

\(\text{Vậy }Min\text{ }H=13\text{ khi }-\frac{5}{2}\le x\le4\)

27 tháng 10 2016

Câu 8:

Giải:
Ta có: \(a:b=3:4\Rightarrow\frac{a}{3}=\frac{b}{4}\Rightarrow\frac{a^2}{9}=\frac{b^2}{16}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a^2}{9}=\frac{b^2}{16}=\frac{a^2+b^2}{9+16}=\frac{36}{25}\)

+) \(\frac{a^2}{9}=\frac{36}{25}\Rightarrow a^2=\frac{324}{25}\Rightarrow a=\pm\frac{18}{5}\)

+) \(\frac{b^2}{16}=\frac{36}{25}\Rightarrow b^2=\frac{576}{25}\Rightarrow b=\pm\frac{24}{5}\)

Vậy bộ số \(\left(x;y\right)\)\(\left(\frac{18}{5};\frac{24}{5}\right);\left(\frac{-18}{5};\frac{-24}{5}\right)\)

26 tháng 5 2018

\(a)\) Ta có : 

\(\left|\frac{1}{2}-x\right|\ge0\) ( với mọi x ) 

\(\Rightarrow\)\(A=0,6+\left|\frac{1}{2}-x\right|\ge0,6\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\frac{1}{2}-x=0\)

\(\Leftrightarrow\)\(x=\frac{1}{2}\)

Vậy GTNN của \(A\) là \(0,6\) khi \(x=\frac{1}{2}\)

Chúc bạn học tốt ~ 

26 tháng 5 2018

\(b)\) Ta có : 

\(\left|2x+\frac{2}{3}\right|\ge0\) ( với mọi x ) 

\(\Rightarrow\)\(-\left|2x+\frac{2}{3}\right|\le0\) ( với mọi x ) 

\(\Rightarrow\)\(B=\frac{2}{3}-\left|2x+\frac{2}{3}\right|\le\frac{2}{3}\) ( cộng hai vế cho \(\frac{2}{3}\) ) 

Dấu "=" xảy ra \(\Leftrightarrow\)\(2x+\frac{2}{3}=0\)

\(\Leftrightarrow\)\(2x=\frac{-2}{3}\)

\(\Leftrightarrow\)\(x=\frac{-2}{3}:2\)

\(\Leftrightarrow\)\(x=\frac{-2}{3}.\frac{1}{2}\)

\(\Leftrightarrow\)\(x=\frac{-1}{3}\)

Vậy GTLN của \(B\) là \(\frac{2}{3}\) khi \(x=\frac{-1}{3}\)

Chúc bạn học tốt ~ 

27 tháng 5 2018

Ta có :  

\(-\left(2x-6\right)^4\le0\forall x\)

\(\Rightarrow-\left(2x-6\right)^4+9\le9\forall x\)

Dấu \("="\)<=>     \(-\left(2x-6\right)^4=0\Leftrightarrow\left(2x-6\right)^4=0\Leftrightarrow2x-6=0\Leftrightarrow2x=6\Leftrightarrow x=3\)

Vậy   GTLN của \(A\)là 9 \(\Leftrightarrow x=3\)

Bài 2 : 

Điều kiện : n khác -2 ; n thuộc Z 

Để G nhỏ nhất 

<=>   3 + 10/n + 2 nhỏ nhất 

<=>    10/n+2 nhỏ nhất 

<=>     n + 2 < 0 ;  n + 2 thuộc Ư ( 10 ) ; n + 2  lớn nhất 

<=>     n + 2 = -1

<=>     n = -1 - 2 

<=>     n = -3

Vậy G đạt GTNN <=> n = -3

27 tháng 5 2018

\(A=-\left(2x-6\right)^4+9\)

Cho mk sử lại đề

19 tháng 6 2018

\(A=\left(2x+\frac{1}{3}\right)^4-1=\left[\left(2x+\frac{1}{3}\right)^2\right]^2-1\)

Vì \(\left[\left(2x+\frac{1}{3}\right)^2\right]^2\ge0\) nên \(\left[\left(2x+\frac{1}{3}\right)^2\right]^2-1\ge-1\) hay \(A\ge-1\)

Nên GTNN của A là -1 đạt được khi \(2x+\frac{1}{3}=0\Leftrightarrow2x=-\frac{1}{3}\Leftrightarrow x=-\frac{1}{6}\)

Bài tập 3. Với giá trị nào của số tự nhiên a thì     \(\frac{5\cdot a-17}{4\cdot a-23}\)có giá trị lớn nhất.Bài tập 4. Tìm số tự nhiên n để phân số B = \(\frac{10\cdot n-3}{4\cdot n-10}\) đạt giá trị lớn nhất. Tìmgiá trị lớn nhất đó.Bài tập 5. Tìm số tự nhiên n để phân số \(\frac{7\cdot n-8}{2\cdot n-3}\) có giá trị lớn nhất.Bài tập 6. Tìm x để phân số \(\frac{1}{x^2+1}\) có giá trị lớn...
Đọc tiếp

Bài tập 3. Với giá trị nào của số tự nhiên a thì     \(\frac{5\cdot a-17}{4\cdot a-23}\)có giá trị lớn nhất.

Bài tập 4. Tìm số tự nhiên n để phân số B = \(\frac{10\cdot n-3}{4\cdot n-10}\) đạt giá trị lớn nhất. Tìm

giá trị lớn nhất đó.
Bài tập 5. Tìm số tự nhiên n để phân số \(\frac{7\cdot n-8}{2\cdot n-3}\) có giá trị lớn nhất.
Bài tập 6. Tìm x để phân số \(\frac{1}{x^2+1}\) có giá trị lớn nhất.
Bài tập 7. Tìm giá trị nhỏ nhất của của biểu thức sau: A= \(\frac{6\cdot n-1}{3\cdot n-2}\) (với n là số nguyên )

Bài tập 8: cho phân số A= \(\frac{n+1}{n-3}\) . Tìm n để có giá trị lớn nhất.
Bài tập 9: ho phân số: p= \(\frac{6\cdot n+5}{3\cdot n+2}\) (n \(\in\)  N Với giá trị nào của n thì phân số p
có giá trị lớn nhất? tìm giá trị lớn nhất đó.

0
2 tháng 1 2015

a) muốn A đạt giá trị lớn nhất thì /x-5/ đạt giá trị nhỏ nhât

mà /x-5/ đạt giá trị nhỏ nhất bằng 0

suy ra giá trị lớn nhất của A là 1000 khi x=5

b) muốn B đạt giá trị nhỏ nhất t hì /y-3/ đạt già trị nhỏ nhất

mà /y-3/ đạt giá trị nhỏ nhất bằng 0

suy ra giá trị nhỏ nhất của B bằng 50 khi y=3

c) muốn C đạt giá trị nhỏ nhất thì /x-100/ và /y+200/ đạt giá trị nhỏ nhất

mà /x-100/ đạt giá trị nhỏ nhất bằng 0

    /y+200/ đạt giá trị nhỏ nhất bằng 0

suy ra giá trị nhỏ nhất của C bằng -1 khi x=100 và y=-200

15 tháng 12 2017

a) muốn A đạt giá trị lớn nhất thì /x-5/ đạt giá trị nhỏ nhât

mà /x-5/ đạt giá trị nhỏ nhất bằng 0

suy ra giá trị lớn nhất của A là 1000 khi x=5

b) muốn B đạt giá trị nhỏ nhất t hì /y-3/ đạt già trị nhỏ nhất

mà /y-3/ đạt giá trị nhỏ nhất bằng 0

suy ra giá trị nhỏ nhất của B bằng 50 khi y=3

c) muốn C đạt giá trị nhỏ nhất thì /x-100/ và /y+200/ đạt giá trị nhỏ nhất

mà /x-100/ đạt giá trị nhỏ nhất bằng 0

    /y+200/ đạt giá trị nhỏ nhất bằng 0

suy ra giá trị nhỏ nhất của C bằng -1 khi x=100 và y=-200

5 tháng 8 2018

Ta có :  A = | x - 3 | + 10 > 0

           Vì  | x - 3 |\(\ge\)0

Dấu = Xảy ra <=> x = 3

Vậy gtnn của A = 10 <=> x = 3

5 tháng 8 2018

Vì \(\left|x-3\right|\ge0\left(\forall x\right)\)

\(\Rightarrow A=\left|x-3\right|+10\ge10\)

Dấu "=" xảy ra \(\Leftrightarrow\left|x-3\right|=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)

Vậy Amin =10 khi và chỉ khi x = 3

Vì \(\left(x-1\right)^2\ge0\left(\forall x\right)\Rightarrow B=-7+\left(x-1\right)^2\ge-7\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)

Vậy Bmin = -7 khi và chỉ khi x = 1

Vì \(\left|x-2\right|\ge0\left(\forall x\right)\Rightarrow C=-3-\left|x-2\right|\le-3\)

Dấu "=" xảy ra \(\Leftrightarrow\left|x-2\right|=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)

Vậy Cmax = -3 khi và chỉ khi x = 2

Vì \(\left(x-2\right)^2\ge0\left(\forall x\right)\Rightarrow15-\left(x-2\right)^2\le15\)

Dấu "=" xảy ra \(\Leftrightarrow x-2=0\Leftrightarrow x=2\)

Vậy Dmax = 15 khi và chỉ khi x = 2