K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 5 2016

C = 2 + 22 + 23 + .. + 299 + 2100

= 2(1 +2 + 22+ 23+ 24) + 26(1 + 2 + 22+ 23+ 24)+....+ (1 + 2 + 22+ 23+ 24).296

= 2 . 31 + 26 . 31 + .... + 296 . 31

= 31(2 + 26 +....+296). Vậy C chia hết cho 31

14 tháng 5 2016

C = 2 + 22 + 23 + .. + 299 + 2100

= ( 2 + 22 + 23 + 24 + 2+26 ) + .......+ ( 295+296+297+298+299 + 2100)

= 2(1 +2 + 22+ 23+ 24) + 26(1 + 2 + 22+ 23+ 24)+....+ (1 + 2 + 22+ 23+ 24).296

= 2 . 31 + 26 . 31 + .... + 296 . 31

= 31(2 + 26 +....+296). Vậy C chia hết cho 31

3 tháng 2 2016

720 nha ban

3 tháng 2 2016

720

duyệt đi olm

24 tháng 8 2021

A = 20 + 21 + 22 + 2+ 24 + 25 … + 299

A=( 20 + 21 + 22 + 2+ 24) +( 25 … + 299)

A= 20.(20 + 21 + 22 + 2+ 24)+25.( 25 … + 299)

A= 1. 31+ 25.31… + 295.31

A= 31. (1+25...+295)

KL: ...... 

24 tháng 8 2021

\(A=2^0+2^1+2^2+2^3+2^4+...+2^{99}=\left(2^0+2^1+2^2+2^3+2^4\right)+2^5\left(2^0+2^1+2^2+2^3+2^4\right)+...+2^{95}\left(2^0+2^1+2^2+2^3+2^4\right)=31+31.2^5+...+31.2^{95}=31\left(1+2^5+...+2^{95}\right)⋮31\)

12 tháng 9 2021

\(B=2+2^2+2^3+2^4+...+2^{99}+2^{100}=2\left(1+2^2+2^3+2^4\right)+...+2^{96}\left(1+2^2+2^3+2^4\right)=2.31+2^6.31+...+2^{96}.31=31\left(2+2^6+...+2^{96}\right)⋮31\)

Cảm ơn bạn/chị nhé ạ!!!Thankyou very much!!!

 

20 tháng 12 2020

Ta có A=2+22+23+24+....+299

=>A=(2+22+23)+(24+25+26)+...+(297+298+299)

=>A=(2+22+23)+23(2+22+23)+....+296(2+22+23)

=>A=14+23.14+....+296.14

=>A=14(23+26+...+296) ⋮ 14

=>A⋮14

A=(1+2+2^2)+2^3(1+2+2^2)+...+2^96(1+2+2^2)+2^99

=7(1+2^3+...+2^96)+2^99 ko chia hết cho 7

27 tháng 12 2023

Chứng minh chia hết cho 7

A = 21 + 22 + 23 + ................ + 2120

A = (21 + 22 + 23) + (24 + 25 + 26) + ................ + (2118 + 2119 + 2120)

A = 2.(1 + 2 + 4) + 24.(1 + 2 + 4) + ................. + 2118.(1 + 2 + 4)

A = 2.7 + 24 . 7 + ................ + 2118.7

A = 7.(2 + 24 + ........... + 2118)

1 tháng 7 2016

tinh 

E=10.11.12.13+11.12.13.14+...+20.21.22.23

ai tra loi nhanh nhat minh se tink cho

1 tháng 7 2016

abcabc=154154

25 tháng 12 2021

\(A=1+2+2^2+2^3+....+2^{98}+2^{99}\\ \Leftrightarrow A=\left(1+2\right)+\left(2^2+2^3\right)+\left(2^4+2^5\right)+....+\left(2^{98}+2^{99}\right)\\ \Leftrightarrow A=3+2^2.\left(1+2\right)+2^4.\left(1+2\right)+....+2^{98}.\left(1+2\right)\\ \Leftrightarrow A=3+3.2^2+3.2^4+....+3.2^{98}\\ \Leftrightarrow A=3.\left(1+2^2+2^4+...+2^{98}\right)⋮3\)