K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2020

Bài 1 :                                                             Bài giải

A B C H D F E

Bài 2 :                                                           Bài giải

A C B D E I F

Bài 3 :                                                     Bài giải

A B C D E 1 2 H I

Xét 2 tam giác \(\Delta ABI\text{ và }\Delta EBI\) có : 

\(BA=BE\) ( gt )

\(BD\) : cạnh chung

\(\widehat{B_1}=\widehat{B_2}\) ( BD là đường phân giác của \(\widehat{B}\) )

\(\Rightarrow\text{ }\Delta ABD=\Delta EBD\text{ }\left(c.g.c\right)\)

\(\Rightarrow\text{ }AD=DE\text{ }\left(2\text{ cạnh tương ứng }\right)\)

....

Tự làm tiếp nha ! Mình bận rồi !

Bài 1: Phân tích các biểu thức sau thành tích của hai đơn thức trong đó có một đơn thức là 20x5y2:a, - 120x5y4 b, 60x6y2 c, -5x15y3Bài 2: Điền đơn thức thích hợp vào chỗ trống:a, 3x2y + ..........= 5 x2y b,........-2 x2 = -7 x2 c,......+.........+ x5 = x5Bài 3: Thu gọn các đơn thức sau:a, 5xy2(-3)y; b, 3/4 a2b3 . 2,5a; c, 1,5p.q.4p3.q2d,2x2y.3xy2; e, 2xy.4/5x2y3.10xyz f,-10y2.(2xy)3.(-3x)2Bài 4: Cho tam giác ABC vuông tại A (AC>AB). Gọi I...
Đọc tiếp

Bài 1: Phân tích các biểu thức sau thành tích của hai đơn thức trong đó có một đơn thức là 20x5y2:
a, - 120x5y4 b, 60x6y2 c, -5x15y3
Bài 2: Điền đơn thức thích hợp vào chỗ trống:
a, 3x2y + ..........= 5 x2y b,........-2 x2 = -7 x2 c,......+.........+ x5 = x5
Bài 3: Thu gọn các đơn thức sau:
a, 5xy2(-3)y; b, 3/4 a2b3 . 2,5a; c, 1,5p.q.4p3.q2
d,2x2y.3xy2; e, 2xy.4/5x2y3.10xyz f,-10y2.(2xy)3.(-3x)2
Bài 4: Cho tam giác ABC vuông tại A (AC>AB). Gọi I là trung điểm của BC. Vẽ đường trung trực của cạnh BC cấtC tại D. Trên tia đối của tia AC lấy điểm E sao cho AE = AD. Gọi F là giao điểm của BE và đường thẳng AI. Chứng minh :
a, CD = BE; b, Góc BEC = 2. góc BEC
c, Tam giác AEF cân d, AC=BF
Bài 5: Cho tam giác ABC có góc A bằng 90o và BD là đường phân giác. Trên BC lấy điểm E sao cho BE = BA
a, Chứng minh AD = DE và BD là đường trung trực của đoạn thẳng AE
b, Kẻ AH vuông góc với BC. Chứng minh: AE là tia phân giác của góc HAC
c, Chứng minh AD<CD
d, Gọi tia Cx là tia đối của tia CB. Tia phân giác của góc Acx cắt đường thẳng BD tại K. Tính số đo góc BAK
Bài 6: Cho tam giác abc cân tại a, đường phân giác của góc b cắt ac tại M.
Kẻ me vuông góc với bc ( e thuộc bc). đường thẳng em cắt ba tại I
a, chứng minh tam giác abm = tam giác ebm
b, chứng minh bm là đường trung trực của ae
c, so sánh am và mc
d, chứng minh tam giác BCI cân

0
Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:a) BD là đường trung trực của AE.b) AD<DCc) Ba điểm E, D, F thẳng hàngBài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.a) Tính BCb) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCBc) Trên tia đối của tia DB lấy điểm E sao cho...
Đọc tiếp

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:

a) BD là đường trung trực của AE.

b) AD<DC

c) Ba điểm E, D, F thẳng hàng

Bài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.

a) Tính BC

b) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCB

c) Trên tia đối của tia DB lấy điểm E sao cho DE=DC. Chứng minh tam giác BCE vuông

d)Chứng minh:DF là phân giác của góc ADE và BE vuông góc CF

Bải 3: Cho tam giác đều ABC. Tia phân giác góc B cắt cạnh AC ở M. Từ A kẻ đường thẳng vuông góc với AB cắt các tia BM, BC lần lượt ở M và E. Chứng minh:

a) Tam giác ANC là tam giác cân

b) NC vuông góc BC

c) Tam giác AEC là tam giác cân

d) So sánh BC và NE

Bài 4: Cho tam giác nhọn ABC, kẻ BM vuông góc AC, CN vuông góc AB. Trên tia đối của tia BM lấy điểm D sao cho BD=AC, trên tia đối của tia CN lấy điểm E sao cho CE=AB. Chứng minh:

a) Góc ACE= góc ABD

b) Tam giác ABD = tam giác ECA

c) Tam giác AED là tam giác vuông cân

0
C1:Cho tam giác ABC.Kẻ AH vuông góc với BC .Trên tia đối của tia AH lấy D sao cho AH=AD.Gọi E là trung điểm của HC , F là gia điểm của AC và DE.Chứng minh: a, AF=1/3 AC b, H,F và trung điểm của M của DC thẳng hàng ; c, HF=1/3 CD. C2:Cho tam giác ABC vuông tại A (AC>AB).Gọi I là trung điểm của BC . Vẽ đường trung trực của cạnh BC cắt AC tại D.Trên tia đối của tia AC lấy điểm E sao cho AE=AD.Gọi F là giao điểm của BE và...
Đọc tiếp

C1:Cho tam giác ABC.Kẻ AH vuông góc với BC .Trên tia đối của tia AH lấy D sao cho AH=AD.Gọi E là trung điểm của HC , F là gia điểm của AC và DE.Chứng minh: a, AF=1/3 AC b, H,F và trung điểm của M của DC thẳng hàng ; c, HF=1/3 CD.

C2:Cho tam giác ABC vuông tại A (AC>AB).Gọi I là trung điểm của BC . Vẽ đường trung trực của cạnh BC cắt AC tại D.Trên tia đối của tia AC lấy điểm E sao cho AE=AD.Gọi F là giao điểm của BE và đường thẳng AI.Chứng minh: a, CD=BE b,GócBEC=2GócBCE c,Tam giác AEF cân d, AC=BF

C3,Cho tam giác ABC có góc A=90độ và BD là đường phân giác.Trên BC lấy điểm E sao cho BE=BA. a,Chứng minh AD=DE và BD là đường trung trực của đoạn thẳng AE b,Kẻ AH vuông góc BC.Chứng minh:AE là tia phân giác của góc HAC c, Chứng minh AD<CD d, Gọi tia Cx là tia đối của tia CB.Tia phân giác của góc Acx,cắt đường thẳng BD tại K.Tính số đo góc BAK.

1

Bài 1:

a)

Ta có: AD=AH(gt)

mà D,A,H thẳng hàng

nên A là trung điểm của DH

Xét ΔDHC có

CA là đường trung tuyến ứng với cạnh DH(A là trung điểm của DH)

DE là đường trung tuyến ứng với cạnh CH(E là trung điểm của CH)

CA\(\cap\)AE={F}

Do đó: F là trọng tâm của ΔDHC(Tính chất ba đường trung tuyến của tam giác)

\(CF=\frac{2}{3}AC\)

Ta có: CF+AF=AC(F nằm giữa A và C)

\(\Leftrightarrow AF=AC-CF=AC-\frac{2}{3}AC=\frac{1}{3}AC\)(đpcm)

b) Ta có: F là trọng tâm của ΔDHC(cmt)

⇔HF là đường trung tuyến ứng với cạnh DC của ΔDHC

mà HM là đường trung tuyến ứng với cạnh DC của ΔDHC(M là trung điểm của DC)

và HM và HF có điểm chung là H

nên H,F,M thẳng hàng(đpcm)

c) Xét ΔHCD vuông tại H có HM là đường trung tuyến ứng với cạnh huyền CD(M là trung điểm của CD)

nên \(HM=\frac{1}{2}CD\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)(1)

Ta có: HM là đường trung tuyến ứng với cạnh CD của ΔHCD(M là trung điểm của CD) và F là trọng tâm của ΔCHD(cmt)

nên \(HF=\frac{2}{3}HM\)

hay \(HM=\frac{3}{2}\cdot HF\)(2)

Từ (1) và (2) suy ra \(\frac{3}{2}\cdot HF=\frac{1}{2}\cdot CD\)

\(\Leftrightarrow HF=\frac{1}{2}\cdot CD:\frac{3}{2}=\frac{1}{2}\cdot CD\cdot\frac{2}{3}=\frac{1}{3}\cdot CD\)(đpcm)

Bài 2:

a) Xét ΔDBC có

DI là đường trung tuyến ứng với cạnh BC(I là trung điểm của BC)

DI là đường cao ứng với cạnh BC(Đường trung trực của BC cắt AC tại D)

Do đó: ΔDBC cân tại D(Định lí tam giác cân)

⇒DB=DC(3)

Ta có: AD=AE(gt)

mà D,A,E thẳng hàng

nên A là trung điểm của DE

Xét ΔBDE có

BA là đường trung tuyến ứng với cạnh DE(A là trung điểm của DE)

BA là đường cao ứng với cạnh DE(BA⊥AD, E∈AD)

Do đó: ΔBDE cân tại B(Định lí tam giác cân)

⇒BD=BE(4)

Từ (3) và (4) suy ra CD=BE(đpcm)

b) Ta có: \(\widehat{BDE}\) là góc ngoài đỉnh D của ΔBDC(\(\widehat{BDE}\)\(\widehat{BDC}\) là hai góc kề bù)

\(\Leftrightarrow\widehat{BDE}=\widehat{C}+\widehat{DBC}\)(Định lí góc ngoài của tam giác)

\(\widehat{C}=\widehat{DBC}\)(hai góc ở đáy của ΔDBC cân tại D)

nên \(\widehat{BDE}=2\cdot\widehat{BCE}\)

\(\widehat{BDE}=\widehat{BEC}\)(hai góc ở đáy của ΔBDE cân tại B)

nên \(\widehat{BEC}=2\cdot\widehat{BCE}\)(đpcm)

c) Trên tia đối của tia IA lấy điểm G sao cho IA=IG

Xét ΔAIB và ΔGIC có

AI=GI(theo cách vẽ)

\(\widehat{AIB}=\widehat{GIC}\)(hai góc đối đỉnh)

IB=IC(I là trung điểm của BC)

Do đó: ΔAIB=ΔGIC(c-g-c)

⇒AB=CG(hai cạnh tương ứng)

Ta có: ΔAIB=ΔGIC(cmt)

\(\widehat{ABI}=\widehat{GCI}\)(hai góc tương ứng)

\(\widehat{ABI}\)\(\widehat{GCI}\) là hai góc ở vị trí so le trong

nên AB//CG(Dấu hiệu nhận biết hai đường thẳng song song)

Ta có: AB//CG(cmt)

AB⊥AC(ΔABC vuông tại A)

Do đó: CG⊥AC(Định lí 2 từ vuông góc tới song song)

Xét ΔABC vuông tại A và ΔCGA vuông tại C có

AC chung

AB=CG(cmt)

Do đó: ΔABC=ΔCGA(hai cạnh góc vuông)

\(\widehat{BCA}=\widehat{GAC}\)(hai góc tương ứng)

hay \(\widehat{BCE}=\widehat{GAC}\)

Ta có: \(\widehat{BEC}=2\cdot\widehat{BCE}\)(cmt)

\(\widehat{BCE}=\widehat{GAC}\)(cmt)

nên \(\widehat{BEC}=2\cdot\widehat{GAC}\)

\(\widehat{GAC}=\widehat{EAF}\)(hai góc đối đỉnh)

nên \(\widehat{BEC}=2\cdot\widehat{EAF}\)(5)

Ta có: \(\widehat{BEC}\) là góc ngoài tại đỉnh E của ΔAEF(\(\widehat{BEC}\)\(\widehat{FEA}\) là hai góc kề bù)

nên \(\widehat{BEC}=\widehat{EAF}+\widehat{EFA}\)(Định lí góc ngoài của tam giác)(6)

Từ (5) và (6) suy ra \(\widehat{EAF}+\widehat{EFA}=2\cdot\widehat{EAF}\)

\(\Leftrightarrow\widehat{EFA}=2\cdot\widehat{EAF}-\widehat{EAF}\)

hay \(\widehat{EFA}=\widehat{EAF}\)

Xét ΔEAF có \(\widehat{EFA}=\widehat{EAF}\)(cmt)

nên ΔEAF cân tại E(Định lí đảo của tam giác cân)

d) Ta có: \(\frac{AC}{BF}=\frac{AD+DC}{BE+EF}=\frac{AE+BD}{BD+EA}=1\)

nên AC=BF(đpcm)

3 tháng 5 2022

ko có hình hả bn

 

1. Cho ∆ABC vuông tại A (AB < AC). Vẽ tia BD là phân giác của góc ABC (D ∈ AC). Trên cạnh BC lấy điểm E sao cho BA = BE.a. Chứng minh: ∆BAD = ∆BEDb. Từ A kẻ AH ⊥ BC tại H. Chứng minh: AH // DEc. Trên tia đối của tia ED lấy điểm K sao cho ED = EK. Chứng minh: Góc EKC = góc ABC2.Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE = BA. Phân giác góc B cắt AC tại D. a. Chứng minh ∆ABD = Đồng ý∆EBD và...
Đọc tiếp

1. Cho ∆ABC vuông tại A (AB < AC). Vẽ tia BD là phân giác của góc ABC (D ∈ AC). Trên cạnh BC lấy điểm E sao cho BA = BE.

a. Chứng minh: ∆BAD = ∆BED

b. Từ A kẻ AH ⊥ BC tại H. Chứng minh: AH // DE

c. Trên tia đối của tia ED lấy điểm K sao cho ED = EK. Chứng minh: Góc EKC = góc ABC

2.

Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE = BA. Phân giác góc B cắt AC tại D. 

a. Chứng minh ∆ABD = Đồng ý∆EBD và DE ⊥ BC

b. Gọi K là giao điểm của tia ED và tia BA. Chứng minh AK = EC.

c. Gọi M là trung điểm của KC. Chứng minh ba điểm B, D, M thẳng hàng.

3.

Cho tam giác ABC vuông tại A (AB < AC). Trên cạnh BC lấy điểm M sao cho BA = BM. Gọi E là trung điểm AM.

a.Chứng minh: ∆ABE = ∆MBE.

b. Gọi K là giao điểm BE và AC. Chứng minh: KM ⊥ BC,

c. Qua M vẽ đường thẳng song song với AC cắt BK tại F. Trên đoạn thẳng KC lấy điểm Q sao cho KQ = MF. Chứng minh: góc ABK = QMC

4

 

Cho tam giác ABC có AB = AC, lấy M là trung điểm của BC.

a) Chứng minh ∆ABM = ∆ACM

b) Kẻ ME ⊥ AB tại Em kẻ MF ⊥ AC tại F. Chứng minh AE = AF.

c) Gọi K là trung điểm của EF. Chứng minh ba điểm A, K, M thẳng hàng

d) Từ C kẻ đương thẳng song song với AM cắt tia BA tại D. Chứng minh A là trung điểm của BD.

2

4:

a: Xet ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC
=>ΔAMB=ΔAMC

b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

góc EAM=góc FAM

=>ΔAEM=ΔAFM

=>AE=AF
c: AE=AF
ME=MF

=>AM là trung trực của EF

mà K nằm trên trung trực của EF

nên A,M,K thẳng hàng

28 tháng 4 2023

4:

a: Xet ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC
=>ΔAMB=ΔAMC

b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

góc EAM=góc FAM

=>ΔAEM=ΔAFM

=>AE=AF
c: AE=AF
ME=MF

=>AM là trung trực của EF

mà K nằm trên trung trực của EF

nên A,M,K thẳng hàng

a: Xét ΔBAD và ΔBED có

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

Do đó: ΔBAD=ΔBED

=>DA=DE
=>D nằm trên đường trung trực của AE(1)

Ta có: BA=BE

=>B nằm trên đường trung trực của AE(2)

Từ (1) và (2) suy ra BD là đường trung trực của AE

b: Sửa đề: AF=EC

Ta có: ΔBAD=ΔBED

=>\(\widehat{BAD}=\widehat{BED}\)

mà \(\widehat{BAD}=90^0\)

nên \(\widehat{BED}=90^0\)

=>DE\(\perp\)BC

Xét ΔDAF vuông tại A và ΔDEC vuông tại E có

DA=DE

\(\widehat{ADF}=\widehat{EDC}\)

Do đó;ΔDAF=ΔDEC

=>AF=EC

c: Sửa đề: CM AE//CF

Xét ΔBFC có \(\dfrac{BA}{AF}=\dfrac{BE}{EC}\)

nên AE//CF
d: Sửa đề: I là trung điểm của FC

Ta có: IF=IC

=>I nằm trên đường trung trực của CF(3)

Ta có: DF=DC(ΔDAF=ΔDEC)

=>D nằm trên đường trung trực của CF(4)

ta có: BA+AF=BF

BE+EC=BC

mà BA=BE

và AF=EC

nên BF=BC

=>B nằm trên đường trung trực của CF(5)

Từ (3),(4),(5) suy ra B,D,I thẳng hàng

23 tháng 1

Help me

1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại MA. chứng minh tam giác ABC bằng tam giác MBEB. chứng minh DM vuông góc với BCC .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IACcâu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)A. chứng minh tam giác ABD bằng tam giác ACDB. Vẽ...
Đọc tiếp

1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại M

A. chứng minh tam giác ABC bằng tam giác MBE

B. chứng minh DM vuông góc với BC

C .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IAC

câu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)

A. chứng minh tam giác ABD bằng tam giác ACD

B. Vẽ đường trung tuyến của tam giác ABC cắt cạnh AC tại G. chứng minh G là trọng tâm của tam giác ABC

C. Gọi H là trung điểm của cạnh DC. qua h Vẽ đường thẳng vuông góc với cạnh DC cắt cạnh AC tại E. Chứng minh tam giác DEC cân

D. Chứng minh ba điểm B, G, E thẳng hàng

Câu 3 Cho tam giác ABC vuông tại A. Vẽ trung tuyến AM của tam giác ABC, Kẻ MH vuông góc với AC. Trên tia đối của tia MH đặt điểm  K sao cho MK bằng MH

a. chứng minh tam giác MHC bằng tam giác MKB và BK vuông góc với KH

B. Chứng minh AB song song với HK và BK = AH.

C. Vẽ BH cắt AB tại g. Gọi I là trung điểm của AB. Chứng minh ba điểm C, G, I thẳng hàng

câu4 Cho tam giác ABC vuông tại A. gọi M là trung điểm cạnh BC. trên tia đối của tia MA lấy điểm D sao cho MD = MA.

A . chứng minh tam giác MCD bằng tam giác MBD và AC song song với BD

B. Gọi I là trung điểm AM, J là trung điểm BM. AJ cắt BI tại G. Chứng minh tam giác GAB là tam giác cân

Câu 5 cho tam giác ABC vuông tại A (AB bé hơn AC). vẽ BD là tia phân giác của góc ABC (D thuộc AC). trên đoạn BC lấy điểm E sao cho BE bằng BA

a chứng minh tam giác ABD bằng tam giác EBD .Từ đó suy ra góc BED là góc vuông

b.  tia ED  cắt tia BA tại EF. Chứng minh tam giác BED cân

C. Chứng minh tam giác AFC bằng tam giác  ECF

D.Chứng minh: AB + AC >DE+BC

câu 6: Cho tam giác ABC vuông tại A. Vẽ đường phân phân giác BD của tam giác ABC và E là hình chiếu của D trên BC

a. chứng minh tam giác ABD bằng tam giác EBD và AE vuông góc với BD

B. Gọi giao điểm của hai đường thẳng ED và BA là F. Chứng minh tam giác ABC bằng tam giác AFC 

C. Qua A vẽ đường thẳng vuông góc với BC cắt CF tại G. Chứng minh ba điểm B, D, G thẳng hàng

câu 7: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ AD là phân giác của góc A (D thuộc BC)

A . Chứng minh tam giác ABD bằng tam giác ACD

B. lấy H là trung điểm của AB. Trên tia đối của tia HC lấy điểm K sao cho HK = HC. Chứng minh rằng AK = BC

c. CH cắt AD tại G. Chứng minh (BA+BC)÷6 >GH

4
28 tháng 4 2019

bài 1 đề bài có sai ko?

29 tháng 4 2019

Đề đúng nha bạn

1) Cho tam giác cân ABC (AB=AC). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M,N. DM=EN, đường thẳng BC cắt MN tại trung điểm I của MN. Chứng minh rằng: đường thẳng vuông góc vs MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.2)Cho tam giác ABC vuông tại A, K là trung điểm của...
Đọc tiếp

1) Cho tam giác cân ABC (AB=AC). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M,N. DM=EN, đường thẳng BC cắt MN tại trung điểm I của MN. Chứng minh rằng: đường thẳng vuông góc vs MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.

2)Cho tam giác ABC vuông tại A, K là trung điểm của cạnh BC. Qua K kẻ đường thẳng vuông góc vs AK, đường này cắt các đường thẳng AB và AC lần lượt ở D và E. Gọi I là trung điểm của DE.
a)Chứng minh rằng: AI vuông góc vs BC
b) Có thể nói DE nhỏ hơn BC được không? Vì sao?

3) Cho tam giác ABC (AB>AC), M là trung điểm của BC. Đường thẳng đi qua M và vuông góc vs tia phân giác của góc A tại H cắt hai tia AB, AC lần lượt tại E và F. CMR:
a) EF^2/4 +AH^2=AE^2
b) 2BME=ACB-B
c) BE=CF
4)Cho tam giác ABC có góc B và C là 2 góc nhọn. Trên tia đối của tia AB lấy điểm D sao cho AD=AB, trên tia đối của tia AC lấy điểm E sao cho AE=AC. M là trung điểm của BE, N là trung điểm CB. Ax là tia bất kỳ nằm gưac 2 tia AB và AC. Gọi H, K lần lượt là hình chiếu của B và C trên tia Ax. Xác định vị trí của tia Ax để tổng BH+CK có giá trị lớn nhất.

5)Cho tam giác ABC có 3 góc nhọn, đường cao AH, ở miền ngoài của tam giác ABC ta vẽ các tam giác vuông cân ABE và ACF đều nhận A làm đỉnh góc vuông. Kẻ EM, FN cùng vuông
góc vs AH (M,N thuộc AH)
a) CM: EM+HC=NH
b) CM: EN // FM

3
13 tháng 7 2015

bạn đăng từng bài lên 1 đi

mik giải dần cho

30 tháng 1 2017

dễ mà bn

\(Bài 1. Cho góc xOy, có Ot là tia phân giác. Lấy điểm A trên tia Ox, điểm B trên tia Oy sao cho OA = OB. Vẽ đoạn thẳng AB cắt Ot tại M. Chứng minh a) OAM = OBM; b) AM = BM; OM  AB c) OM là đường trung trực của AB d) Trên tia Ot lấy điểm N . Chứng minh NA = NB Bài 2. Cho ABC vuông tại A, trên tia đối của tia CA lấy điểm K sao cho CK = CA, từ K kẻ KE vuông góc với đường thẳng AC. Chứng mỉnhằng: a) AB //...
Đọc tiếp

\(Bài 1. Cho góc xOy, có Ot là tia phân giác. Lấy điểm A trên tia Ox, điểm B trên tia Oy sao cho OA = OB. Vẽ đoạn thẳng AB cắt Ot tại M. Chứng minh a) OAM = OBM; b) AM = BM; OM  AB c) OM là đường trung trực của AB d) Trên tia Ot lấy điểm N . Chứng minh NA = NB Bài 2. Cho ABC vuông tại A, trên tia đối của tia CA lấy điểm K sao cho CK = CA, từ K kẻ KE vuông góc với đường thẳng AC. Chứng mỉnhằng: a) AB // KE b)  ABC =  KEC ; BC = CE Bài 3. Cho góc nhọn xOy. Trên tia Ox lấy hai điểm A, C. Trên tia Oy lấy hai điểm B,D sao cho OA = OB, AC = BD. a) Chứng minh: AD = BC. b) Gọi E là giao điểm AD và BC. Chứng minh: EAC = EBD c) Chứng minh: OE là phân giác của góc xOy, OE CD Bài 4. Cho ABC coù BÂ=900, gọi M là trung điểm của BC. Trên tia đối của tia AM lấy điểm E sao cho ME = MA. a) Tính  BCE b) Chứng minh BE // AC. Bài 5. Cho ABC, lấy điểm D thuộc cạnh BC ( D không trùng với B,C). Gọi Mlà trung điểm của AD. Trên tia đối của tia MB lấy điểm E sao cho ME= MB, trên tia đối của tia MC lấy điểm F sao cho MF= MC. Chứng minh rằng: a) AME = DMB; AE // BC b) Ba điểm E, A, F thẳng hàng c) BF // CE Bài 6: Cho có  B =  C , kẻ AH  BC, H  BC . Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Chứng minh: a) AB = AC b) ABD = ACE c) ACD = ABE d) AH là tia phân giác của góc DAE e) Kẻ BK  AD, CI  AE. Chứng minh ba đường thẳng AH, BK, CI cùng đi qua một điểm. \)

2
27 tháng 8 2017

Tự mà làm lấy

17 tháng 3 2022

chịu. nhình rối hết cả mắt @-@