K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2021

C = 1 + 31 + 32 + 33 + ....... + 311

C = ( 311 - 31 ) : 11 = 39

C = 39 - ( 33 - 32 )

C = 39 - 31

C =38

27 tháng 7 2015

Cho C= 1+3+32+...+311

a) \(C=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+\left(3^8+3^9+3^{10}+3^{11}\right)\)

\(=\left(1+3+3^2+3^3\right)+3^4.\left(1+3+3^2+3^3\right)+3^8.\left(1+3+3^2+3\right)\)

\(=40+3^4.40+3^8.40\)

\(=40.\left(1+3^4+3^8\right)\) chia hết cho 40.

b) \(C=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^9+3^{10}+3^{11}\right)\)

\(=\left(1+3+3^2\right)+3^3.\left(1+3+3^2\right)+...+3^9.\left(1+3+3^2\right)\)

\(=13+3^3.13+...+3^9.13\)

\(=13.\left(1+3^3+3^6+3^9\right)\)chia hết cho 13

=> điều phải chứng minh

27 tháng 7 2015

Rất cảm ơn cậu nhé

 

6 tháng 3 2020

Bạn tham khảo 2 link này:

b) https://olm.vn/hoi-dap/detail/104629170538.html

a)https://olm.vn/hoi-dap/detail/8732513603.htm

6 tháng 3 2020

C=như trên

đến đoạn này mình thấy đề bạn thiếu hay sao ý . đnág nhẽ là C=1+3+3^2+3^3 +..+3^1 ko  nên làm theo cái mình sửa nhá

=> 3C=\(3+3^2+3^3+3^4+...+3^{12}\)

=>3C-C=\(\left(3+3^2+3^3+3^4+...+3^{12}\right)-\left(1+3+3^2+3^3+...+3^{11}\right)\)

=>2C=\(3^{12}-1=531440⋮40\)

=> 2C chia hết cho 40 

=> C cũng chia hết cho 40

14 tháng 10 2017

\(C=1+3+3^2+.....+3^{11}.\)

\(\Rightarrow C=\left(1+3+3^2\right)+.....+\left(3^9+3^{10}+3^{11}\right)\)

\(\Rightarrow C=13+3^3.13+....+3^9.13\)

\(\Rightarrow C=13.\left(1+3^3+....+3^9\right)\)

Vì \(13⋮13\)

Do đó : \(C⋮13\)

\(C=1+3+3^2+.....+3^{11}\)

\(\Rightarrow C=\left(1+3+3^2+3^3\right)+....+\left(3^8+3^9+3^{10}+3^{11}\right)\)

\(\Rightarrow C=40+40.3^4+3^8.40\)

\(\Rightarrow C=40.\left(1+3^4+3^8\right)\)

Vì \(40⋮40\)

Do đó  \(C⋮40\)(đpcm)

14 tháng 10 2017

a,C1+3+32)+.....+39,(1+3+32)

C=13+.....+39.13

C=13(1+.....+39) chia hết cho 13

Vậy C chia hết cho 13

b,C=(1+3+32+33)+.....+38(1+3+32+33)

   C=40+.....+38+40

    C=40(1+.....+38.40

    C=40(1+.....+38 chia hết cho 40

Vậy C chia hết cho 40

29 tháng 9 2019

a) Ta có : \(C=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^9+3^{10}+3^{11}\right)\)

\(=\left(1+3+3^2\right)+3^3.\left(1+3+3^2\right)+...+3^9.\left(1+3+3^2\right)\)

\(=13+3^3.13+...+3^9.13\)

\(=13.\left(1+3^3+...+3^9\right)⋮13\)

\(\Rightarrow C⋮13\left(\text{đpcm}\right)\)

b) Ta có : \(C=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+\left(3^8+3^9+3^{10}+3^{11}\right)\)

\(=\left(1+3+3^2+3^3\right)+3^4.\left(1+3+3^2+3^4\right)+3^8.\left(1+3+3^2+3^3\right)\)

\(=40+3^4.40+3^8.40\)

\(=40.\left(1+3^4+3^8\right)⋮40\)

\(\Rightarrow C⋮40\left(\text{đpcm}\right)\)

23 tháng 10 2016

a)

C=1+3+32+33+34+35+...+311

C=(1+3+32)+(33+34+35)+...+(39+310+311)

C=13+(33.1+33.3+33.32)+...+(39.1+39.3+39.32)

C=13+33.(1+3+32)+...+39.(1+3+32)

C=13.1+33.13+...+39.13

C=13.(1+33+35+37+39)\(⋮\)3

\(\Rightarrow\)C\(⋮\)3

Câu b ghép 4 số lại với nhau rồi làm như trên

26 tháng 11 2015

ta đảo  ngược A lại ta có 1+112+113+...+119

2A=112+113+114+....+119+1110

lấy 2A-A còn 1110 có tận cùng băng 0 nên chia hết 5