Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\text{A = 1.2.3 + 3.4.5+...99.100.101}\)
\(\text{A=1.3(5-3)+3.5(7-3)+}...+99.101\left(103-3\right)\)
\(=\left(1.3.5+3.5.7+5.7.9+...99.101.103\right)-\left(1.3.3+3.5.3+99.101.3\right)\)
\(=\left(15+99.101.103.105\right):8-3.\left(1.3+3.5+5.7+...+99.101\right)\)
\(=13517400-3.171650\)
\(=13002450\)
D=1.2.3+3.4.5+...+99.100.101
D=1.2.3.4+5.6.7.4+........+99.100.101.4
D=1.2.3.4+5.6.7.(8-4)+........+99.100.101.(102-98)
D=(1.2.3.4+5.6.7.8+.........+99.100.101.102)-(1.2.3.4+5.6.7.8+....+98.99.100.101)
D=98.99.100.101
A = 3/1.2.3 +3/2.3.4 + ............ + 3/98 . 99 . 100
2A = 2.3 / 1.2.3 + ...........+ 2.3/98.99.100
2A= 3. ( 2/1.2.3 + ............. + 2/98.99.100)
2A= 3.( 1/1.2 - 1/2.3 + .......... + 1/98 .99 - 1/99 . 100)
2A = 3.(1/2 - 1/990)
2A = 3. 247/495
2A = 741/495
A = 741/495 : 2
A = 247 / 330
bn cho mình gửi sắp đến thi học kì 2 rồi. đây là những món quà mà bn sẽ nhận đc:
1: áo quần
2: tiền
3: đc nhiều người yêu quý
4: may mắn cả
5: luôn vui vẻ trong cuộc sống
6: đc crush thích thầm
7: học giỏi
8: trở nên xinh đẹp
phật sẽ ban cho bn những điều này nếu cậu gửi tin nhắn này cho 25 người, sau 3 ngày bn sẽ có những đc điều đó. nếu bn ko gửi tin nhắn này cho 25 người thì bn sẽ luôn gặp xui xẻo, học kì 2 bn sẽ là học sinh yếu và bạn bè xa lánh( lời nguyền sẽ bắt đầu từ khi đọc) ( mình
cũng bị ép);-;
\(C=1.2.3+2.3.4+...+48.49.50\)
\(\Rightarrow4C=1.2.3.4+2.3.4.4+...+48.49.50.4\)
\(=1.2.3.4+2.3.4.\left(5-1\right)+...+48.49.50.\left(51-47\right)\)
\(=1.2.3.4+2.3.4.5-1.2.3.4+...+48.49.50.51-47.48.49.50\)
\(=48.49.50.51\)
\(\Rightarrow C=\frac{48.49.50.51}{4}=1499400\)
a/
\(b=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{97.99}\)
\(2b=\dfrac{3-1}{1.3}+\dfrac{5-3}{3.5}+\dfrac{7-5}{5.7}+...+\dfrac{99-97}{97.99}=\)
\(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99}=\)
\(=1-\dfrac{1}{99}=\dfrac{98}{99}\Rightarrow b=\dfrac{98}{2.99}=\dfrac{49}{99}\)
b/
\(c=\dfrac{3-1}{1.2.3}+\dfrac{4-2}{2.3.4}+\dfrac{5-3}{3.4.5}+...+\dfrac{100-98}{98.99.100}=\)
\(=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+\dfrac{1}{98.99}-\dfrac{1}{99.100}=\)
\(=\dfrac{1}{2}-\dfrac{1}{99.100}\)
c/
\(\dfrac{2}{5}.d=\dfrac{4-2}{2.3.4}+\dfrac{5-3}{3.4.5}+...+\dfrac{100-98}{98.99.100}+\dfrac{101-99}{99.100.101}=\)
\(=\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+...+\dfrac{1}{98.99}-\dfrac{1}{99.100}+\dfrac{1}{99.100}-\dfrac{1}{100.101}=\)
\(=\dfrac{1}{2.3}-\dfrac{1}{100.101}\Rightarrow d=\left(\dfrac{1}{2.3}-\dfrac{1}{100.101}\right):\dfrac{2}{5}\)
đặt \(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{18.19.20}\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}\right)+\frac{1}{2}\left(\frac{1}{2.3}-\frac{1}{3.4}\right)+...+\frac{1}{2}\left(\frac{1}{18.19}-\frac{1}{19.20}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{18.19}-\frac{1}{19.20}\right)\)
\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{380}\right)=\frac{189}{760}\)
Đặt \(B=\frac{3}{1.2}+\frac{3}{2.3}+...+\frac{3}{19.20}=\frac{3}{1}-\frac{3}{2}+\frac{3}{2}-\frac{3}{3}+...+\frac{3}{19}-\frac{3}{20}\)
\(=3-\frac{3}{20}=\frac{57}{20}\)
\(D=A-B=\frac{189}{760}-\frac{57}{20}=-\frac{1977}{760}\)
Gọi \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{18.19.20}\)là A
\(\frac{3}{1.2}-\frac{3}{2.3}-...-\frac{3}{19.20}\)là B
\(A=\left[\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}\right)+\frac{1}{2}.\left(\frac{1}{2.3}-\frac{1}{3.4}\right)+...+\frac{1}{2}.\left(\frac{1}{18.19}-\frac{1}{19.20}\right)\right]\)
\(A=\left[\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{18.19}-\frac{1}{19.20}\right)\right]\)
\(A=\left[\frac{1}{2}.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{19}-\frac{1}{20}\right)\right]\)
\(A=\left[\frac{1}{2}.\left(1-\frac{1}{20}\right)\right]\)
\(A=\frac{1}{2}.\frac{19}{20}\)
\(A=\frac{19}{40}\)
\(B=\frac{3}{1.2}-\frac{3}{2.3}-...-\frac{3}{19.20}\)
\(B=\left(\frac{3}{1.2}+\frac{3}{2.3}+...+\frac{3}{19.20}\right)\)
\(B=\left[3.\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{19.20}\right)\right]\)
\(B=\left[3.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{2}{3}+...+\frac{1}{19}-\frac{1}{20}\right)\right]\)
\(B=\left[3.\left(\frac{19}{20}\right)\right]\)
\(B=\frac{57}{20}\)
Vậy A - B = \(\frac{19}{40}-\frac{57}{20}\)
\(=-\frac{95}{40}=-\frac{19}{8}\)
Nếu đúng thì k nha
\(A=\frac{24}{1.2.3}+\frac{24}{2.3.4}+....+\frac{24}{19.20.21}\)
\(A=24.\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+....+\frac{1}{19.20.21}\right)\)
\(A=12.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+....+\frac{2}{19.20.21}\right)\)
\(A=12.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-....-\frac{1}{20.21}\right)\)
\(A=12.\left(\frac{1}{2}-\frac{1}{420}\right)=12.\frac{209}{420}=\frac{209}{35}\)
\(A=1.2.3+3.4.5+5.6.7+...+99.100.+101\)
\(A=1.3\left(5-3\right)+3.5\left(7-3\right)+5.7\left(9-3\right)+...+99.100\left(103-3\right)\)
\(=\left(1.3.5+3.5.7+5.7.9+99.101.103\right)-\left(1.3.3+3.5.3+99.101.3\right)\)
\(=\left(15+99.101.103.105\right):8-3.\left(1.3+3.5+5.7+99.101\right)\)
\(=13517400-3.171650\)
\(=13002450\)
Đặt A=1.2.3+2.3.4+3.4.5+......+999.1000.1001
=>4A=1.2.3.4+2.3.4.4+3.4.5.4+.....+999.1000.1001.4
=>4A=1.2.3.(4-0)+2.3.4.(5-1)+3.4.5.(6-2)+......+999.1000.1001.(1002-998)
=>4A=1.2.3.4-0.1.2.3+2.3.4.5-1.2.3.4+3.4.5.6-2.3.4.5+.....+999.1000.1001.1002-998.999.1000.1001
=>4A=1.2.3.4+2.3.4.5-1.2.3.4+3.4.5.6-2.3.4.5+....+999.1000.1001.1002-998.999.1000.1001
=>4A=999.1000.1001.1002
=>A=\(\frac{999.1000.1001.1002}{4}=.....\) (số này to quá,có thể bn ghi nhầm đề)
bạn ơi số to thì ko cần ghi kết quả cụ thể cx đc mà ko pải sai đề đâu bạn ấy lm đúng òi
\(A=\frac{3}{1.2.3}+\frac{3}{2.3.4}+\frac{3}{3.4.5}+...+\frac{3}{2015.2016.2017}\)
\(A=\frac{3}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}\right)+\frac{3}{2}.\left(\frac{1}{2.3}-\frac{1}{3.4}\right)+\frac{3}{2}.\left(\frac{1}{3.4}-\frac{1}{4.5}\right)+...+\frac{3}{2}.\left(\frac{1}{2015.2016}-\frac{1}{2016.2017}\right)\)
\(A=\frac{3}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{2015.2016}-\frac{1}{2016.2017}\right)\)
\(A=\frac{3}{2}.\left(\frac{1}{1.2}-\frac{1}{2016.2017}\right)\)
\(A=\frac{3}{4}-\frac{3}{2.2016.2017}< 1\)