Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A)=vậy\(\frac{2014}{2015}+\frac{2015}{2014}>\frac{666665}{333333}.\)
bạn nhé
\(S=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{2015.2016}\)
\(S=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2015}-\frac{1}{2016}\)
\(S=1-\frac{1}{2016}=\frac{2015}{2016}\)
\(S=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-........+\frac{1}{2015}-\frac{1}{2016}\)
\(S=\frac{1}{1}-\left(-\frac{1}{2}+\frac{1}{2}\right)+\left(-\frac{1}{3}+\frac{1}{3}\right)+......+\left(-\frac{1}{2015}+\frac{1}{2015}\right)-\frac{1}{2016}\)
\(S=\frac{1}{1}-\frac{1}{2016}=\frac{2015}{2016}\)
S = 1/1x2 + 1/2x3 + 1/3x4 + ... + 1/2014x2015 + 1/2015x2016
S = 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/2014 - 1/2015 + 1/2015 - 1/2016
S = 1 - 1/2016
S = 2015
\(1.2.3....2015-1.2.3....2014-1.2.3....2013.2014^2\)
\(=1.2.3...\left(2014+1\right)-1.2.3...\left(2014+1\right)\)
\(=0\)