Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2, kéo dài tia Am về phía M cắt DC tại F
Do ABCD là hình thang có góc A=góc D=90 độ nên AB song song CD
=> AB cũng song song DF => góc MCF = góc MBA ( so le trong )
xét tam giác MAB và tam giác MFC có:
góc CMF= góc AMB ( đối đỉnh)
MB=MC( M là trung điểm BC)
góc ABM= góc MCF( chứng minh trên)
=> tam giác MAB= tam giác MFC ( g.c.g)
=> MA=MF
Xét ta giác ADF có DM là đương trung tuyến ứng với cạnh huyền AF => DM=AM=MF
=> tam giác ADM và tam giác MDF cân tại M => góc MAD= góc MDA= 45 độ => góc MAB = 90 độ - góc MAD và góc MDC = 90 độ - góc MDA <=> góc MAB= 45 độ và góc MDC= 45 độ => góc MAB=góc MDC
3, Tương tự như câu 1
4, a+b+c=0 => a+b=-c => (a+b)^3=-c^3 <=> a^3+3a^2b+3ab^2+b^3=-c^3 => a^3+b^3+c^3=-3a^2b-3ab^2
<=> a^3+b^3+c^3= -3ab(a+b) Mà a+b=-c nên thay vào ta có:
a^3+b^3+c^3=-3ab(-c)=3abc mà abc=-2 => a^3+b^3+c^3=-6
\(P=\left(x+2y\right)^2-2\left(x+2y\right)\left(y-1\right)+\left(y-1\right)^2\\ P=\left(x+2y-y+1\right)^2=\left(x+y+1\right)^2\\ Q.sai.đề\\ M=\left(x+y\right)^3-3xy\left(x+y\right)+3xy\\ M=1^3-3xy\left(x+y-1\right)=1-3xy\left(1-1\right)=1-0=1\\ x+y=2\Leftrightarrow\left(x+y\right)^2=4\\ \Leftrightarrow x^2+y^2+2xy=4\\ \Leftrightarrow2xy=4-10=-6\\ \Leftrightarrow xy=-3\\ N=x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\\ N=2\left(10+3\right)=2\cdot13=26\)
1,Tính giá trị của biểu thức:
a,A=2.(x3-y3)-3.(x+y)2 với x-y=2
b,B=x3-3xy.(x-y)-y3-x2+2xy-y2 với x-y=7
a) M = (x² + 3xy - 3x³) + (2y³ - xy + 3x³)
= x² + 3xy - 3x³ + 2y³ - xy + 3x³
= x² + (3xy - xy) + (-3x³ + 3x³) + 2y³
= x² + 2xy + 2y³
Tại x = 5 và y = 4
M = 5² + 2.5.4 + 2.4³
= 25 + 40 + 2.64
= 65 + 128
= 193
b) N = x²(x + y) - y(x² - y²)
= x³ + x²y - x²y + y³
= x³ + (x²y - x²y) + y³
= x³ + y³
Tại x = -6 và y = 8
N = (-6)³ + 8³
= -216 + 512
= 296
c) P = x² + 1/2 x + 1/16
= (x + 1/2)²
Tại x = 3/4 ta có:
P = (3/4 + 1/2)² = (5/4)² = 25/16
C1:
x\(^3\) ‐y\(^3\) ‐3xy=x\(^3\) ‐y\(^3\) ‐3xy.1
Mà x‐y=1 nên x\(^3\) ‐y\(^3\) ‐3xy=x\(^3\) ‐y\(^3\) ‐3xy.﴾x‐y﴿
=x\(^3\) ‐y\(^3\) ‐3x 2y+3xy\(^2\)
=﴾x‐y﴿\(^3\)
=1\(^3\) =1
Vậy với x‐y=1 thì x\(^3\) -y\(^3\)-3xy=1
\(\left(x+y\right)=3\Leftrightarrow\left(x+y\right)^2=9\)
\(\Leftrightarrow x^2+y^2+2xy=9\)
\(\Leftrightarrow\)\(5+2xy=9\)
\(\Leftrightarrow xy=2.\)
\(x^3+y^3=\left(x+y\right).\left(x^2+y^2-xy\right)\)
\(=3.\left(5-2\right)=9\)
Vậy \(x+y=3\) và \(x^2+y^2=5\) khi đó \(x^3+y^3=9.\)