Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=\left(1-\frac{1}{3}\right)\left(1-\frac{1}{6}\right)\left(1-\frac{1}{10}\right)\left(1-\frac{1}{15}\right)...\left(1-\frac{1}{210}\right)\)
\(C=\frac{2}{3}.\frac{5}{6}.\frac{9}{10}.\frac{14}{15}...\frac{209}{210}\)
\(C=\frac{4}{6}.\frac{10}{12}.\frac{18}{20}.\frac{28}{30}...\frac{418}{420}\)
\(C=\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}.\frac{4.7}{5.6}...\frac{19.22}{20.21}\)
\(C=\frac{1.4.2.5.3.6.4.7...19.22}{2.3.3.4.4.5.5.6...20.21}\)
\(C=\frac{\left(1.2.3.4...19\right).\left(4.5.6.7...22\right)}{\left(2.3.4.5...20\right).\left(3.4.5.6...21\right)}\)
\(C=\frac{1.22}{20.3}=\frac{1.11}{10.3}=\frac{11}{30}\)
C=2/3.5/6.9/10...209/210
C=4/6.10/12.18/20...418/420 là do nhân với 2
C=1.4/2.3.2.5/3.4.3.6/4.5...19.22/20.21
C=1.2.3....19/2.3.4...20.4.5.6...22/3.4.5...21
C=1/20.22/3
C=11/30
Dễ ấy mà hiểu chưa
\(a,A=\left(3\dfrac{5}{6}-1\dfrac{1}{3}\right)\left(3\dfrac{4}{15}-2\dfrac{3}{5}\right)\)
\(\Leftrightarrow A=\left(3+\dfrac{5}{6}-1+\dfrac{1}{3}\right)\left(3+\dfrac{4}{15}-2+\dfrac{3}{5}\right)\)
\(\Leftrightarrow A=\left[\left(3-1\right)+\left(\dfrac{5}{6}+\dfrac{1}{3}\right)\right]+\left[\left(3-2\right)+\left(\dfrac{4}{15}+\dfrac{3}{5}\right)\right]\)
\(\Leftrightarrow A=\left[2+\left(\dfrac{5}{6}+\dfrac{2}{6}\right)\right]+\left[1+\left(\dfrac{4}{15}+\dfrac{9}{15}\right)\right]\)
\(\Leftrightarrow A=\left(2+\dfrac{7}{6}\right)+\left(1+\dfrac{13}{15}\right)\)
\(\Leftrightarrow A=\left(2+1+\dfrac{1}{6}\right)+\left(1+\dfrac{13}{15}\right)\)
\(\Leftrightarrow A=3\dfrac{1}{6}+1\dfrac{13}{15}\)
Vậy...
\(b,B=\dfrac{4^6.9^5+6^9.120}{8^4.3^{12}-6^{11}}\)
\(\Leftrightarrow B=\dfrac{\left(2^2\right)^6.\left(3^2\right)^5+\left(2.3\right)^9.\left(2^3.3.5\right)}{\left(2^3\right)^4.3^{12}-\left(2.3\right)^{11}}\)
\(\Leftrightarrow B=\dfrac{2^{12}.3^{10}+2^9.3^9.2^3.3.5}{2^{12}.3^{12}-2^{11}.3^{11}}\)
\(\Leftrightarrow B=\dfrac{2^{12}.3^{10}+2^{12}.3^{10}.5}{2^{12}.3^{12}-2^{11}.3^{11}}\)
\(\Leftrightarrow B=\dfrac{\left(2^{10}.3^{10}\right)\left(1+5\right)}{\left(2^{11}.3^{11}\right)\left(2.3-1\right)}\)
\(\Leftrightarrow B=\dfrac{6}{\left(2.3\right).5}\)
\(\Leftrightarrow B=\dfrac{6}{6.5}\)
\(\Leftrightarrow B=\dfrac{1}{5}\)
Vậy....
C = \(\left(1-\frac{1}{3}\right)\left(1-\frac{1}{6}\right)\left(1-\frac{1}{10}\right)...\left(1-\frac{1}{210}\right)=\frac{2}{3}.\frac{5}{6}.\frac{9}{10}...\frac{209}{210}=\frac{4}{6}.\frac{10}{12}.\frac{18}{20}...\frac{418}{420}\)
= \(\frac{2.2}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}...\frac{19.22}{20.21}=\frac{2.2\left(2.3.4...19\right)\left(5.6...22\right)}{\left(2.3.4..20\right)\left(3.4.5..21\right)}=\frac{4.22}{19.3.4}=\frac{22}{57}\)