\(\dfrac{1}{x}\) với x > hoặc bằng 4

Tìm GTNN

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2021

\(C=\dfrac{1}{x}+\dfrac{x}{16}+\dfrac{15}{16}x\ge2\sqrt{\dfrac{1}{x}.\dfrac{x}{16}}+\dfrac{15}{16}.4=\dfrac{1}{2}+\dfrac{15}{4}=\dfrac{17}{4}\)

dấu = xảy ra khi x=4

31 tháng 8 2021

\(x+\dfrac{1}{x}=\dfrac{1}{16}x+\dfrac{1}{x}+\dfrac{15}{16}x\ge2\sqrt{\dfrac{x}{16x}}+\dfrac{15}{16}.4=\dfrac{1}{2}+\dfrac{15}{4}=\dfrac{17}{4}\)

\(minC=\dfrac{17}{4}\Leftrightarrow x=4\)

22 tháng 9 2019

Dat \(P=\frac{1}{x^2}+\frac{1}{y^2}\)

\(=\left(\frac{1}{x^2}+4\right)+\left(\frac{1}{y^2}+4\right)-8\ge\frac{4}{x}+\frac{4}{y}-8\ge\frac{16}{x+y}-8=8\)

Dau '=' xay ra khi \(x=y=\frac{1}{2}\)

Vay \(P_{min}=8\)khi \(x=y=\frac{1}{2}\)

22 tháng 9 2019

Áp dụng BĐT Cô - si:

\(\frac{1}{x^2}+\frac{1}{y^2}=\left(\frac{1}{x^2}+4\right)+\left(\frac{1}{y^2}+4\right)-8\ge\frac{4}{x}+\frac{4}{y}-8\)

\(\ge\frac{16}{x+y}-8=16-8=8\)

Vậy GTNN của bt là 8 \(\Leftrightarrow x=y\Leftrightarrow x=y=\frac{1}{2}\)

10 tháng 12 2021

Theo đề bài, ta có:

x3+y3=x2−xy+y2x3+y3=x2−xy+y2

hay (x2−xy+y2)(x+y−1)=0(x2−xy+y2)(x+y−1)=0

⇒\orbr{x2−xy+y2=0x+y=1⇒\orbr{x2−xy+y2=0x+y=1

+ Với x2−xy+y2=0⇒x=y=0⇒P=52x2−xy+y2=0⇒x=y=0⇒P=52

+ với x+y=1⇒0≤x,y≤1⇒P≤1+√12+√0+2+√11+√0=4x+y=1⇒0≤x,y≤1⇒P≤1+12+0+2+11+0=4

Dấu đẳng thức xảy ra <=> x=1;y=0 và P≥1+√02+√1+2+√01+√1=43P≥1+02+1+2+01+1=43

Dấu đẳng thức xảy ra <=> x=0;y=1

Vậy max P=4 và min P =4/3

22 tháng 8 2019

1.

a.\(\Delta=\left(4m+1\right)^2-8\left(m-4\right)=16m^2+33>0\left(\forall m\in R\right)\)

b.Gia su 2 nghiem cua PT la \(x_1,x_2\left(x_1>x_2\right)\)

Theo de bai ta co;\(x_1-x_2=17\)

Tu cau a ta co:\(x_1=\frac{-4m-1+\sqrt{16m^2+33}}{2}\) \(x_2=\frac{-4m-1-\sqrt{16m^2+33}}{2}\)

\(\Rightarrow\frac{-4m-1+\sqrt{16m^2+33}}{2}-\frac{-4m-1-\sqrt{16m^2+33}}{2}=17\)

\(\Leftrightarrow\frac{2\sqrt{16m^2+33}}{2}=17\)

\(\Leftrightarrow16m^2+33=289\)

\(\Leftrightarrow m=4\)

22 tháng 8 2019

2.

a.\(\Delta'=\left(m-1\right)^2-\left(m+2\right)\left(3-m\right)=2m^2-3m-5=\left(m+1\right)\left(2m-5\right)>0\)

TH1:\(\hept{\begin{cases}m+1>0\\2m-5>0\end{cases}\Leftrightarrow m>\frac{5}{2}}\)

TH2:\(\hept{\begin{cases}m+1< 0\\2m-5< 0\end{cases}\Leftrightarrow m< -1}\)

Xet TH1:\(x_1=\frac{-m+1+\sqrt{2m^2-3m-5}}{m+2}\) \(x_2=\frac{-m+1-\sqrt{2m^2-3m-5}}{m+2}\)

Ta co:\(x^2_1+x^2_2=x_1+x_2\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1.x_2=x_1+x_2\)

\(\Leftrightarrow\left(\frac{-2m+2}{m+2}\right)^2-\frac{-m^2+5m+6}{\left(m+2\right)^2}=\frac{-2m+2}{m+2}\)

\(\Leftrightarrow\frac{5m^2-13m-2}{\left(m+2\right)^2}=\frac{-2m^2-2m+4}{\left(m+2\right)^2}\)

\(\Rightarrow7m^2-11m-6=0\)

\(\Delta_m=121+168=289>0\)

\(\Rightarrow\hept{\begin{cases}m_1=2\left(l\right)\\m_2=-\frac{3}{7}\left(l\right)\end{cases}}\) 

TH2;Tuong tu 

Vay khong co gia tri nao cua m de PT co 2 nghiem thoa man \(x^2_1+x^2_2=x_1+x_2\)

19 tháng 8 2021
Bài 1. a) A=7/6
19 tháng 8 2021
b) √x+1 /(√x +2)(√x-1)