Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\left(x^2-5\right)\left(x^2-24\right)< 0\)
\(\Leftrightarrow\hept{\begin{cases}x^2-5>0\\x^2-24< 0\end{cases}}\) hoặc \(\hept{\begin{cases}x^2-5< 0\\x^2-24>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2>5\\x^2< 24\end{cases}}\)hoặc \(\hept{\begin{cases}x^2< 5\\x^2>24\end{cases}}\) ( vô lí)
\(\Leftrightarrow5< x^2< 24\)
Mà x nguyên <=> \(x^2\in\left\{9;16\right\}\)
\(\Leftrightarrow x\in\left\{-3;-4;3;4\right\}\)
Vậy \(x\in\left\{-3;-4;3;4\right\}\)
K chắc trình bày
@@ Học tốt
bài 2: (x-3).(y+2) = -5
Vì x, y \(\in\)Z => x-3 \(\in\)Ư(-5) = {5;-5;1;-1}
Ta có bảng:
x-3 | 5 | -5 | -1 | 1 |
y+2 | 1 | -1 | -5 | 5 |
x | 8 | -2 | 2 | 4 |
y | -1 | -3 | -7 | 3 |
bài 3: a(a+2)<0
TH1 : \(\orbr{\begin{cases}a< 0\\a+2>0\end{cases}}\)=>\(\orbr{\begin{cases}a< 0\\a>-2\end{cases}}\)=> -2<a<0 ( TM)
TH2: \(\orbr{\begin{cases}a>0\\a+2< 0\end{cases}}\Rightarrow\orbr{\begin{cases}a>0\\a< -2\end{cases}}\Rightarrow loại\)
Vậy -2<a<0
Bài 5: \(\left(x^2-1\right)\left(x^2-4\right)< 0\)
TH 1 : \(\hept{\begin{cases}x^2-1>0\\x^2-4< 0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2>1\\x^2< 4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x>1\\x< 2\end{cases}}\)\(\Rightarrow\)1 < a < 2
TH 2: \(\hept{\begin{cases}x^2-1< 0\\x^2-4>0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2< 1\\x^2>4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x< 1\\x>2\end{cases}}\)\(\Rightarrow\)loại
Vậy 1<a<2
\((x-6)(3x-9)>0\)
TH1:
\(\orbr{\begin{cases}x-6< 0\\3x-9< 0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x< 6\\x< 3\end{cases}}\)\(\Rightarrow x< 3\)
TH2:
\(\orbr{\begin{cases}x-6>0\\3x-9>0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x>6\\x>3\end{cases}}\)\(\Rightarrow x>6\)
Vậy \(x< 3\) hoặc \(x>6\)thì \((x-6)(3x-9)>0\)
Học tốt!
20.
\((2x-1)(6-x)>0\)
TH1:
\(\orbr{\begin{cases}2x-1>0\\6-x>0\end{cases}\Rightarrow\orbr{\begin{cases}x< \frac{1}{2}\\x< 6\end{cases}}\Rightarrow x< 6}\)
TH2
\(\orbr{\begin{cases}2x-1< 0\\6-x< 0\end{cases}\Rightarrow\orbr{\begin{cases}x>\frac{1}{2}\\x>6\end{cases}}\Rightarrow x>\frac{1}{2}}\)
Vậy \(x< 6\)hoặc \(x>\frac{1}{2}\)thì \((2x-1)(6-x)>0\)
Bài 1: Cho từng cái < hoặc > 0 rồi giải ra tìm điều kiện của x
Bài 2:
Phân tích số 12 ra là:
3 x 4 = 12
-3 x (-4) = 12
Ta thấy:
3 + 4 = 7
-3 + (-4) = -7 (đáp ứng đúng yêu cầu đề)
=> a = -3 và b = -4
a) vì (x-7).(x+2) < 0 => hai số bên là 2 số khác dấu
mả x+2 > x-7 => x+2 > 0 , x-7 < 0
vi x+2 > 0 => x > 0-2=-2 (1)
vỉ x-7 < 0 =>x < 0+7=7 (2)
Từ (1)(2) => -2 < x < 7
=> x={-1,0,1,2,3,4,5,6}
Vay .....
c) x ∈ Z và x 2 - 5 x 2 - 24 < 0
Ta có: x 2 - 5 > 0 ; x 2 - 24 < 0 ⇒ x 2 > 5 ; x 2 < 24 Nên x 2 ∈ 9 ; 16
x 2 = 9 ⇒ x = ± 3 ; x = 16 ⇒ x = ± 4
Vậy x ∈ - 3 ; 3 ; - 4 ; 4