\(^o\).tan10\(^{^o}\).tan15\(^o\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2023

\(C=tan5\cdot tan85\cdot tan10\cdot tan80\cdot...\cdot tan40\cdot tan50\cdot tan45\)

\(=tan5\cdot cot5\cdot tan10\cdot cot10\cdot...\cdot tan40\cdot cot40\cdot1\)

\(=1\cdot1\cdot...\cdot1\)

=1

11 tháng 5 2020

Nhìn đề bài hãi quá :(

a/ \(A=3\sin\left(5.2\pi+\pi-x\right).\sin\left(2\pi+\frac{\pi}{2}-x\right)+2\sin\left(4.2\pi+\pi+x\right)\)

\(A=3\sin\left(\pi-x\right).\sin\left(\frac{\pi}{2}-x\right)+2\sin\left(\pi+x\right)\)

\(A=3\sin x.\cos x-2\sin x=\sin x\left(3\cos x-2\right)\)

b/ \(B=\sin\left(5.2.180^0+180^0+x\right)-\cos\left(90^0-x\right)+\tan\left(90^0+180^0-x\right)+\cot\left(2.180^0-x\right)\)

\(B=\sin\left(180^0+x\right)-\sin x+\tan\left(90^0-x\right)+\cot\left(-x\right)\)

\(B=-\sin x-\sin x+\cot x-\cot x=-2\sin x\)

c/ \(C=-2\sin\left(-(2\pi+\frac{\pi}{2}-x)\right)-3\cos\left(2\pi+\pi-x\right)+5\sin\left(2.2\pi-\left(\frac{\pi}{2}+x\right)\right)+\cot\left(\pi+\frac{\pi}{2}-x\right)\)

\(C=2\sin\left(\frac{\pi}{2}-x\right)-3\cos\left(\pi-x\right)-5\sin\left(\frac{\pi}{2}+x\right)+\cot\left(\frac{\pi}{2}-x\right)\)

\(2\cos x+3\cos x-5\cos x+\tan x=\tan x\)

11 tháng 5 2020

d/ \(D=\tan\left(-\left(\pi-x\right)\right).\cos\left(-\left(\frac{\pi}{2}-x\right)\right).\left(-\cos x\right)\)

\(D=\tan\left(\pi-x\right).\cos\left(\frac{\pi}{2}-x\right).\cos x\)

\(D=-\tan x.\sin x.\cos x=-\sin^2x\)

e/ \(E=\cos\left(28.2\pi+\pi+\frac{\pi}{2}-x\right)+\sin\left(-\left(58.2\pi+\pi+\frac{\pi}{2}-x\right)\right)+\cos\left(-\left(46.2\pi+\pi+\frac{\pi}{2}-x\right)\right)+\sin\left(35.2\pi+\pi+\frac{\pi}{2}-x\right)\)

\(E=-\cos\left(\frac{\pi}{2}-x\right)+\sin\left(\frac{\pi}{2}-x\right)-\cos\left(\frac{\pi}{2}-x\right)-\sin\left(\frac{\pi}{2}-x\right)\)

\(E=-2\sin x\)

Thôi, stop ở đây, làm nữa chắc tẩu hỏa nhập ma quá :(

Mình thấy hầu hết các bài này đều có chung 1 điểm, và chắc đó cũng là điểm mà bạn thắc mắc: Đó chính là tách các hạng tử ra và biến đổi

Tách cũng đơn giản thôi, cứ gặp sin, cos thì tách sao cho về dạng 2pi+..., gặp tan, cot thì pi.

Còn tách mấy cái phân số như vầy:

Ví dụ \(\frac{7\pi}{2}\) , 7 chia 2 được 3, ta lấy \(\frac{7}{2}-3=\frac{1}{2}\) thì suy ra: \(\frac{7\pi}{2}=3\pi+\frac{\pi}{2}\)

Đó, thế là được :D

NV
18 tháng 3 2019

\(\overrightarrow{u}\overrightarrow{v}=0\Rightarrow\left(\overrightarrow{a}+3\overrightarrow{b}\right)\left(7\overrightarrow{a}-5\overrightarrow{b}\right)=7a^2+16\overrightarrow{a}\overrightarrow{b}-15b^2=0\left(1\right)\)

\(\overrightarrow{x}\overrightarrow{y}=0\Rightarrow\left(\overrightarrow{a}-4\overrightarrow{b}\right)\left(7\overrightarrow{a}-2\overrightarrow{b}\right)=7a^2-30\overrightarrow{a}\overrightarrow{b}+8b^2=0\left(2\right)\)

(1) và (2): \(\left\{{}\begin{matrix}7a^2+16\overrightarrow{a}\overrightarrow{b}-15b^2=0\\7a^2-30\overrightarrow{a}\overrightarrow{b}+8b^2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{a}\overrightarrow{b}=\frac{b^2}{2}\\a^2=b^2\Rightarrow\left|a\right|=\left|b\right|\end{matrix}\right.\)

\(\Rightarrow cos\left(\overrightarrow{a},\overrightarrow{b}\right)=\frac{\overrightarrow{a}\overrightarrow{b}}{\left|\overrightarrow{a}\right|\left|\overrightarrow{b}\right|}=\frac{\frac{b^2}{2}}{\left|a\right|.\left|b\right|}=\frac{\frac{b^2}{2}}{b^2}=\frac{1}{2}\)

\(\Rightarrow\left(\overrightarrow{a};\overrightarrow{b}\right)=60^0\)

18 tháng 3 2019

Cảm ơn bạn rất nhiều !

28 tháng 10 2017

tam giác mà tới 4 cạnh là không tốt đâu nha bạn

30 A B C 30 120 véc tơ AB véc tơ BC đoạn này được kéo dài từ hướng của véc tơ AB ; để dể sát nhận góc tạo bởi 2 véc tơ AB và BC ? => góc đó là góc cần tìm

từ \(\overrightarrow{AB}\) ta kéo dài ra tạo thành 1 góc ứng với cạnh của \(\overrightarrow{BC}\) và cạnh đó là cạnh cần tìm

ta có cạnh cần tìm \(=180-30=150^o\)

vậy góc tạo bởi 2 véc tơ \(\overrightarrow{AB};\overrightarrow{BC}\)\(150^o\) \(\Rightarrow\) chọn đáp án \(C\)

6 tháng 8 2018

G A B C M

A. Ta có G là trọng tâm của tam giác ABC

\(\Rightarrow\overrightarrow{AG}=2\overrightarrow{GM}\)

Hay: \(\overrightarrow{GA}=-2\overrightarrow{GM}\)

\(\Rightarrow\overrightarrow{GA}+2\overrightarrow{GM}=\overrightarrow{0}\) ( Đúng)

B. Ta có:

\(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{OG}+\overrightarrow{GA}+\overrightarrow{OG}+\overrightarrow{GB}+\overrightarrow{OG}+\overrightarrow{GC}\)

\(=\left(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\right)+3\overrightarrow{OG}=\overrightarrow{0}+3\overrightarrow{OG}=\overrightarrow{3OG}\) ( Đúng)

C. \(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\) ( Đúng, đây là điều hiển nhiên)

D. Ta có G là trọng tâm của tam giác ABC

\(\Rightarrow\overrightarrow{AM}=3\overrightarrow{GM}\)

\(\Rightarrow\overrightarrow{AM}=-3\overrightarrow{GM}\)

Vậy đáp án D sai

6 tháng 8 2018

Câu D sửa lạ là:

\(\overrightarrow{AM}=-3\overrightarrow{MG}\) ( Nãy vội nên ghi nhầm)

Bài 1. a. Cho tam giác ABC. Có I,J,K,L xác định sao cho: 1. \(\overrightarrow{IA}\) - \(\overrightarrow{IB}\) +3\(\overrightarrow{IC}\) =\(\overrightarrow{0}\) 2. \(\overrightarrow{KA}\) +\(\overrightarrow{KB}\) -\(\overrightarrow{KC}\) =\(\overrightarrow{0}\) 3. 2\(\overrightarrow{JA}\) + \(\overrightarrow{JB}\) +\(\overrightarrow{JC}\) =\(\overrightarrow{0}\) 4. \(\overrightarrow{LA}\) +\(\overrightarrow{LB}\) +3\(\overrightarrow{LC}\)...
Đọc tiếp

Bài 1. a. Cho tam giác ABC. Có I,J,K,L xác định sao cho:

1. \(\overrightarrow{IA}\) - \(\overrightarrow{IB}\) +3\(\overrightarrow{IC}\) =\(\overrightarrow{0}\)

2. \(\overrightarrow{KA}\) +\(\overrightarrow{KB}\) -\(\overrightarrow{KC}\) =\(\overrightarrow{0}\)

3. 2\(\overrightarrow{JA}\) + \(\overrightarrow{JB}\) +\(\overrightarrow{JC}\) =\(\overrightarrow{0}\)

4. \(\overrightarrow{LA}\) +\(\overrightarrow{LB}\) +3\(\overrightarrow{LC}\) =\(\overrightarrow{0}\)

Biểu diễn \(\overrightarrow{AI}\), \(\overrightarrow{AJ}\), \(\overrightarrow{BK}\) ,\(\overrightarrow{BL}\) theo \(\overrightarrow{AB}\), \(\overrightarrow{AC}\)

b. Với giải thiết cho như câu a. CMR:

1. với mọi O ta có \(\overrightarrow{OI}\)= \(\frac{1}{3}\)\(\overrightarrow{OA}\) + \(\overrightarrow{OC}\) - \(\frac{1}{3}\)\(\overrightarrow{OC}\)

2. với mọi O ta có \(\overrightarrow{OK}\) = \(\overrightarrow{OA}\) + \(\overrightarrow{OB}\) -\(\overrightarrow{OC}\)

3. với mọi O ta có \(\overrightarrow{OJ}\)= \(\frac{1}{2}\)\(\overrightarrow{OA}\) +\(\frac{1}{4}\)\(\overrightarrow{OB}\) + \(\frac{1}{4}\)\(\overrightarrow{OC}\)

4. với mọi O ta có \(\overrightarrow{OL}\)= \(\frac{1}{5}\)\(\overrightarrow{OA}\) + \(\frac{1}{5}\)\(\overrightarrow{OB}\) + \(\frac{3}{5}\)\(\overrightarrow{OC}\)

Bài 2. Cho tam giác ABC. Gọi I,J xác định sao cho \(\overrightarrow{IC}\) = \(\frac{3}{2}\)\(\overrightarrow{BI}\) ; \(\overrightarrow{JB}\) = \(\frac{2}{5}\)\(\overrightarrow{JC}\)

a. Tính \(\overrightarrow{AI}\),\(\overrightarrow{AJ}\) theo \(\overrightarrow{a}\)= \(\overrightarrow{AB}\), \(\overrightarrow{b}\)= \(\overrightarrow{AC}\)

b. Tính \(\overrightarrow{IJ}\) theo \(\overrightarrow{a}\),\(\overrightarrow{b}\)

Bài 3. Cho tam giác ABC, gọi I là điểm sao cho 3\(\overrightarrow{IA}\)-\(\overrightarrow{IB}\)+2\(\overrightarrow{IC}\)=\(\overrightarrow{0}\). Xác định giao điểm của

a. AI và BC

b. IB và CA

c. IC và AB

0
NV
25 tháng 5 2020

d/ \(B=180^0-\left(A+C\right)=75^0\)

\(\Rightarrow b=c=4,5\)

\(\frac{a}{sinA}=\frac{b}{sinB}\Rightarrow a=\frac{b.sinA}{sinB}=\frac{9}{4}\left(\sqrt{6}-\sqrt{2}\right)\)

e/ \(cosA=\frac{b^2+c^2-a^2}{2bc}\Rightarrow a=\sqrt{b^2+c^2-2bc.cosA}\approx23\)

\(cosB=\frac{a^2+c^2-b^2}{2ac}=\frac{433}{460}\Rightarrow B\approx19^043'\)

\(\Rightarrow C=180^0-\left(A+B\right)=...\)

f/ \(cosA=\frac{b^2+c^2-a^2}{2bc}=\frac{11}{15}\Rightarrow A\approx42^050'\)

\(cosB=\frac{a^2+c^2-b^2}{2ac}=\frac{17}{35}\Rightarrow B\approx60^056'\)

\(C=180^0-\left(A+B\right)=...\)

NV
25 tháng 5 2020

a/ \(cosA=\frac{b^2+c^2-a^2}{2bc}=-\frac{1}{2}\Rightarrow A=120^0\)

\(cosB=\frac{a^2+c^2-b^2}{2ac}=\frac{\sqrt{2}}{2}\Rightarrow B=45^0\)

\(C=180^0-\left(A+B\right)=15^0\)

b/\(A=180^0-\left(B+C\right)=79^037'\)

\(\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}\Rightarrow\left\{{}\begin{matrix}b=\frac{sinB}{sinA}.a\approx61\\c=\frac{sinC}{sinA}.a\approx102\end{matrix}\right.\)

c/\(\frac{a}{sinA}=\frac{b}{sinB}\Rightarrow sinB=\frac{bsinA}{a}\approx0,6\Rightarrow B\approx36^052'\)

\(\Rightarrow C=180^0-\left(A+B\right)=75^045'\)

\(\frac{a}{sinA}=\frac{c}{sinC}\Rightarrow c=\frac{a.sinC}{sinA}\approx21\)

1 tháng 9 2019

Dấu "=" xảy ra khi \(\overrightarrow{a}\)\(\overrightarrow{b}\) cùng hướng