K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2017

​Ta có :

\(\overline{aaa}+\overline{bbb}=100a+10a+a+100b+10b+b=111a+111b=111\left(a+b\right)⋮11\left(dpcm\right)\)

18 tháng 9 2017

\(\overline{aaa}+\overline{bbb}⋮37\)

\(\Rightarrow a.111+b.111⋮37\)

\(111⋮37\)

\(\Rightarrow\) 111.( a+b ) \(⋮\) 37

\(\Rightarrow\overline{aaa}+\overline{bbb}⋮37\)

23 tháng 11 2016

1)aaa=111a=37.3.a\(⋮37\)(đpcm)

2)aaa+bbb=111a+111b=111(a+b)\(⋮\)11(đpcm)

Dễ mà haha

31 tháng 10 2016

\(\overline{aaa}+\overline{bbb}=111.a+111.b=111\left(a+b\right)=37\times3\times\left(a+b\right)⋮37\)

9 tháng 10 2016

(aaa + bbb) = 111a + 111b = 111( a + b )
Vì 111 chia hết cho 37 => ( a + b ) chia hết cho 37
=> ( aaa + bbb ) chia hết cho 37

9 tháng 10 2016

(aaa+bbb):37

(a x 100 + a x 10 + a + b x 100 + b x 10 + b ):37

(a x (100 + 10 +1 ) + b x (100 + 10 + 1 ) : 37

(a x 111 + b x 111):37

(111 x (a + b) :37

( 37 x 3 x (a + b) :37 

vậy aaa + bbb : 37

18 tháng 5 2017

a, 111

b, 101

c, 1001

10 tháng 10 2017

a ) Ta có :

\(\overline{aaa}:a\)

\(=a.1.111:a.1\)

\(=111\)

b ) Ta có :

\(\overline{abab}:\overline{ab}\)

\(=\overline{ab}.100+\overline{ab}.1:\overline{ab}\)

\(=\overline{ab}.101:\overline{ab}\)

\(=101\)

c ) Ta có :

\(\overline{abcabc}:\overline{abc}\)

\(=\overline{abc}.1000+\overline{abc}.1:\overline{abc}\)

\(=\overline{abc}.1001:\overline{abc}\)

\(=1001\)

16 tháng 7 2017

1. Ta có 14 và 28 có cùng số dư khi chia7 là 0

mà 28 - 14 = 14 chia hết cho 7 (đpcm)

2. Ta có : \(\overline{aaa}=\overline{a}.111\)

=> \(\overline{aaa}=\overline{a}.3.37⋮37\)

=> \(\overline{aaa}\) luôn chia hết cho 37 (đpcm)

16 tháng 7 2017

1, Gọi số thứ nhất có dạng 7k+n ; số thứ 2 có dạng 7x+n;

=> \(7k+n-\left(7x+n\right)=7k-7x=7\left(k-x\right)⋮7\)

2, Ta có: \(\overline{aaa}=100a+10a+a=111a=37.3.a⋮37\)

Do có chứa 1 thừa số là 37;

3, \(\overline{ab}-\overline{ba}=10a+b-\left(10b+a\right)=9a-9b=9\left(a-b\right)⋮9\)

18 tháng 5 2017

Ta có \(\overline{aaa}=a.111=a.3.37\)

\(=>a.3.37⋮37\)

Vậy \(\overline{aaa}⋮37\left(dpcm\right)\)

6 tháng 11 2018

Ta có ¯¯¯¯¯¯¯¯¯aaa=a.111=a.3.37aaa¯=a.111=a.3.37

=>a.3.37⋮37=>a.3.37⋮37

Vậy ¯¯¯¯¯¯¯¯¯aaa⋮37(dpcm)

nhân tiện, đề bài có gì đó sai

16 tháng 2 2018

Ta có: 3a87+9a3+1a= 3000+a00+87+900+a0+3+10+a

=(3000+87+900+3+10) + ( a.100+ a.10+a)=4000+ a.(100+10+1)

=4000+a.111(1)

aaa+4000= a.111+4000(2)

Từ (1) và (2) suy ra: 3a87+9a3+1a= aaa+4000

Tick cho mik nha!!!yeu